Neuroshare APl Specification
Rev 1.3

Application Programming I nterface for
Accessing Neur ophysiology Experiment Data Files

February 2004

AFFILIATIONS

This standard is being devel oped and maintained through the Neuroshare Project. The purpose
of this project isto create open, standardized methods for accessing neurophysiological
experiment data from avariety of different dataformats, as well as open-source software tools
based on these methods. All standards and software resulting from the Neuroshare Project are
distributed and revised through the http://www.neuroshare.org web site. Additional contact
information and project history can also be accessed through this site.

DISCLAIMER

This specification document is provided “asis’ with no warranties whatsoever, including any
warranty of merchantability, non-infringement, fitness for any particular purpose, or any
warranty otherwise arising out of any proposal, specification or sample. The Neuroshare project
and the working group disclaim all liability relating to the use of information in this
specification.

TRADEMARKS

Windows and Microsoft are registered trademarks of the Microsoft Corporation. All other
product names are trademarks or service marks of their respective owners.

REVISIONS
Thisisthefirst release of the Neuroshare APl Specification version 1.0.

COPYRIGHT AND DISTRIBUTION

This specification document is Copyrighted © 2003 by the maintainers of neuroshare.org and the
Neuroshare Project. This document may be freely distributed in its unmodified form. Modified
versions of this document must be clearly labeled as such and include descriptions of deviations
from the original text. Developerswishing to use this standard are referred to the official
Neuroshare Project web site (http://www.neuroshare.org) for the latest documents.

CONTENTS

INntended SCOPE ANA USAQE.......cccuiiuiiieieiecie ettt sttt te s be et e s be s ae e besaeereestesasesbesbeentesbesneetesaneneas 5
RePresentalion Of DAA TYPEScuiiriiirieriesie ettt s bttt sb ettt sb e bbb e e e e e se st nreenas 6
REPIESENTALION OF THME.. .ttt e ettt b bt b e s et e e e ae e st nreenas 7
SEPUCEUN € OF FIlE DBEAL.....cueeeeeeieiesiisie ettt sttt e e e e st e sesaesbesseste st e e eneesennensentens 7
Conventions Used in thisLibrary SpeCifiCationccccciiiiiiecicie e e e 9
PIIMITIVE DALA TYPES. et itetiieieieeeete st st se et s s tese e te st et e e e seeseebesbesaente e e st eseeseeseasesbeseeseneeneeneenensennas 9
SUMMary of LiDrary FUNCHIONScc.ooviii et 10
Library FUNCLION AN QUIMENTS. ..ottt e et b et sn e e e e seebe e 11
Library FUNCLION RELUIMNSoiuiee ettt st e s e b saeeae e beeaeestesbeensesbesteensesreennenes 11
Multiple Instance and Multi-threaded OPeration..........c.ccoeveieririeninesese e 11
Library Loading and ReSoUrCe AlIOCALION............couiiieiiiecie ettt st s 12
Recommended Library INSLAllatioN.........ooeieeiriireses e 12
Library Version and File SUPPOIt FUNCLIONScoiiiiiiiieeieesesiese et 13
NS_GEILIDIaryINfO. .. .o et 13
NS_LIBRARYINFO ...ttt sttt sttt sne e st e b e nseenneennee e 14
Managing NeUral Data FilS........ccoiiieii ettt sttt ae e st b e e nbesreenne s 15
LIS @07 o1 = SRS 15
LIS €T (1= o1 o RS 16
NS FILEINFO ...ttt eba e sba e e sbe e e snbe e e snneneas 17
NS _ClOSEFTIE ...t e s re et e e neesreenaeeneeeseenseeneennes 18
General Entity INFOrMatioN..........ooouiiiiieic et sttt s re et sre e e e stesneeneas 19
NS _GEIENTITYINTOiieie e s b e et sae e e b e e r e e reeenre e 19
NS _ENTITYINFO.... oottt sttt sae e st e e be e nneenneennee e 20
ACCESSING EVENE ENTITIES ..ottt st s re et e s be e e e steeatesbesreentesresnnanes 21
NS_GEIEVENTINTO.....c. et e esre e eeeneenns 21
NS EVENTINFO ..ottt ba s s e e sbe e e snne e e nnneeens 22
NS _GEIEVENIDALAc..eiieeeieie ettt sttt sbe e s ae e e be e s nseenseesnee e 23
ACCESSING ANAIOY ENTITIES ...ttt et s e re e be s be et e st e eatesbesreentesreeneenns 24
NS _GELANAIOGINTO ..o e s e e e reeenre e 24
NS_ANALOGINFO ...ttt sttt sbe e st e e b e naeenseesnee e 25
NS _GELANAIOGDALA.ccveeitieiieeeie et b e st e et e e s s e e sae e sate e beeenseesseeenreeans 26
ACCESSING SEJMENT ENTITIES.... oottt bbb e 27
(S TS 85 =0 .07 0141 01 (o 1SR 27
NS_SEGMENTINFO......oiiiiie ittt sbe e st e e b e ee e nbeesnee e 28
NS_GEtSEgMENTSOUN CEINTO ...ttt n e 29
NS _SEGSOURCEINFO......ciiiii sttt ssae s sba e s sbe e e sseeesnneeeas 30
NS_GELSEYMENEDALA.eeteeiieiieesie e n e r e nns 31
Accessing NeUral EVENt ENLITIES. ..ottt ettt e st s re et sreene s 32
LIS €T (N (= U1 | o ST 32
NS _NEURALINFO..... .ottt nsa s s ba e sbe e s snbe e e nnneeeas 33

NS _GEINEUrAIDALAcccvieiiie ittt e et s e e e ae e sate e beeenneenseeenreenes 34

SEar CNiNG ENTITY INAEXES ..ottt et e e ene e 35
NS_GELINAEXBY TIIMEottt e et bbb b nes 35
NS _GELTIMEBYINUEXcceiiiieciee e re e enre s 36
Extended Error Message HaNGIENoooiieiieeiesesie ettt nre 37
NS _GEILASIEITOINMST ..eeiiiiiiiiiie ettt e s e s nba e e sba e e sbeeesnbeeesnrenens 37
REVISION HISLOIY ...ttt b b e e et et e st e bt e bt bt ene e e e e e e e beebenben 38

| ntended Scope and Usage

The purpose of this Application Programming Interface (API) standard is to define a common
interface for accessing neurophysiology experiment datafiles. This common interface allows
neurophysiology applications to access datain a variety of proprietary file formats through
vendor-specific libraries. Such applications can include extracellular spike sorting programs,
data visualization utilities, and high-level neuroscience data analysis programs.

[Neurophysiology User Application]
Vendor X) (VendorY) (Vendorz) " Future Library for
Library) | Library _ Library Intermediate Format
s = s) (1\ ; 3
Vendor X Vendor Y Vendor Z Intermediate Format
Data Files Data Files Data Files Data Files
(. / . / (. J S

As of thisrevision, the API only defines functions necessary to extract information from data
files. At afuturetime, extensions may be provided to allow user applications to write/modify
datafiles. It isaso possible that a simple intermediate datafile format, based on the data
structuresin this API, may be created for storing processed experiment information and sorted
spike timing information generated from other spike classification programs.

When compl ete, this document will contain all of the information required to develop both
libraries and user applications. Additional utilities and example source code for supporting the
development of libraries and applications will be made available on the neuroshare.org web site
asthey are developed.

As of thisrevision, the specification is oriented towards 32-bit Microsoft Windows applications
through the use of Dynamic Link Libraries (DLLSs). Whenever possible, portable coding
conventions will be used to support future ports to other 32-bit and 64-bit operating systems.

Representation of Data Types

Although there are many types of data sources possible in neurophysiological experiments, this
API definition abstracts datainto four basic categories or “Entity Types’. These are:

Event Entities— Discrete events that consist of small time-stamped text or binary data
packets. These are used to represent data such astrial markers, experimenta events,
digital input values, and embedded user comments.

Analog Entities — Continuous, sampled data that represent digitized analog signals such
as position, force, and other experiment signals, as well as electrode signals such as EKG,
EEG and extracellular microelectrode recordings. Analog Entities may also contain gaps
in time from data files that do not record data between experimental trials.

Segment Entities — Short, time-stamped segments of digitized analog signalsin which
the segments are separated by variable amounts of time. Segment Entities can contain
datafrom more than one source. They are intended to represent discontinuous anal og
signals such as extracellular spike waveforms from electrodes or groups of electrodes.

Neural Event Entities— Timestamps of event and segment entitities that are known to
represent neural action potential firing times. For example, if a segment entity contains
sorted neural spike waveforms, each sorted unit is also exported as aneura entity. If an
event entity is known by the library to only contain neuron firing times, it should be
exported as aneura event entity instead of an event entity. This entity provides asimple,
efficient representation of neura firing times for high-level neuroscience analysis
programs. It avoids the problems of requiring applicationsto look for spike timing
within different entity types and the problems associated with decoding one or more unit
firing times from within single segment entries.

The API definition also provides functions for querying information about data files and the
entities contained in the datafile. Thisinformation includes|abels, metric units, timings, etc.

-

<
Data File or File Group -3 File INformation

Trial Start/Stop Markers

Stimulus Information Neuroshare —3 Event Entities
Reward Information Compliant

Position Information . .

— API Librar -3 Analog Entities

Force Information for the y 9

EEG Data Data F t o

EMG Data ata Forma —JP Segment Entities
Extracellular Spikes
\Embedded Comments -3 Neural Event Entities

Representation of Time

The API definition assumes that each datafile consists of asingle span of time. The timings of
all data presented by the library to user applications are referenced to the beginning of this span.

Some data formats organize data according to trials in which time is recorded within each trial,
but not between trials. Libraries that access these types of files must combine these trialsinto a
single time span and present an event entity that marks the beginning of each trial. Although this
is somewhat awkward, this abstraction makes the organization of trial-based files equivaent to
single time span files that use event markers to delineate trials.

Structur e of File Data

Dataentitiesin adatafile are enumerated by the library from O to (total number of entities—1).
Each entity is one of the four types discussed in the Representation of Dates Types section above
and there are no requirements for ordering entities by type.

Each entity contains one or more indexed data entries that are ordered by increasing time. The
API provides functions for querying the characteristics of the file, the number of entities, and the
characteristics of each entity, including the number of indexes for each entity.

batafile —T—> Entity0 —>(Index0) + (index1 |+ eoe

with]
N Entities —» Entity 1 —> [Index 0] + [Index 1 J + eoeoe

—> Entity (N-1) —» [Index 0] + [Index 1 J + eoeoo

The structure of the indexed data entries for each entity depends on the entity type:

Each index of an event entity refers to atimestamp and data combination. The number of
indexesis equal to the number of event entries for that event entity in the datafile.

Each index of an analog entity refers to a specific digitized sample. Each analog entity
contains samples from a single channel and the number of indexesis equal to the number
of samples present for that channel. The time interval between successive samplesis not
always the sampling period as there may be gaps in the acquisition of the data.

Each index of a segment entity refers to a short, time-stamped segment of analog data
from one or more sources. The number of indexesis equal to the number of entries for
that segment entity in thefile.

Each index of aneural event entity refers to atimestamp for each neural event. Each
neural event entity contains event times for asingle neural source. The number of
indexesis equal to the number of entries for that neural event entity.

The API provides unified functions for searching for index ranges of an entity of any type by
time range, and functions are aso provided to report the timing of an entity index.

The data abstraction listed above is somewhat demanding on the libraries, asit requires them to
organize, temporally sort and report datain the file according to type. This structure was chosen
to simplify the data representation for user applications that must analyze the datain these files.
The libraries were selected as the best place for this re-organization of data to occur as most
libraries have access to specia knowledge about the particular file formats that they must handle.
It would be highly inefficient and complicated for user applications to import data from serial
packet streams into catal ogs of available data with time and index search capabilities.

Libraries must properly manage memory to allow multiplefiles or file groups to be opened
simultaneously. The library should handle a minimum of 64 open datafiles. If system resources
constrain the number of concurrently opened files, the library ns_OpenFile function reports a
system error.

The prototypical loading sequence for the library and data files can be summarized by the
following pseudo-code:

Load Needed Library;
Repeat for Each Neural Data File,
Open Neural Data File;
Cet General File Infornmation;
Query Nunber of Entities;

For Each Entity,
Get Entity Type;
Get Type Specific Entity Information;
Repeat Main Operational Loop,
Determ ne Entities of |Interest;
Search for Needed | ndexes of Relevant Entities;
Retrieve the Data for the Relevant Entities;
Do Application-Specific Processing and D spl ay;
Wiile Still I|nterested;
While Neural Data Files Renmin;
Close Al Neural Data Files;

Unload Library;

Conventions Used in thisLibrary Specification

The function definitions and data structures presented in this document will be specified
according to the C language syntax and convention. However, the actual language used to write
the librariesisirrelevant as libraries use acommon linkage format for exported functions.

All Neuroshare-specific functions, constants and data types will includea“ns ” prefix.

The API functionsin this specification utilize several text fields for descriptions, such as |abels,
user comments, electrode locations, etc. The use of human readable text is encouraged wherever
possible in these fields along with simplified data representations. For example, if avendor uses
aproprietary data packet format for position information in experiments, the vendor is
encouraged to include library code that presents this data as analog entities with labels such as
“POS X” and “POS Y”. Inthisinitial version of the specification, all text information will be
reported in 8-bit ASCII format.

All analog valuesin this library, including time, shall use a 64-bit double-precision floating point
representation. All analog entities aso include atext field for reporting measurement units such
as“meters’, “MPa’, “kg’. The use of metric unitsis strongly encouraged. Timeisaways
reported in seconds.

Primitive Data Types
To avoid ambiguity across platforms, the following primitive data types are explicitly defined:

char 8-bit character value normally reserved for ASCII strings
int8 8-hit (1 byte) signed integers

uint8 8-hit (1 byte) unsigned integers

intl6 16-bit (2 byte) signed integers

ui nt 16 16-bit (2 byte) unsigned integers

int32 32-bit (4 byte) signed integers

ui nt 32 32-bit (4 byte) unsigned integers

doubl e 64-bit, double precision floating point value

All of the data structures and functions detailed in this specification will use the above data
types. Inthis API specification, datatypes in functions and structures are rigidly defined so that
endianess issues should not be a problem in properly written code. Developers are discouraged
from making assumptions about byte ordering in the above primitive data types.

The default alignment for library data structure membersis 4 bytes and the structures have been
declared with this alignment and should require no padding. Future revisions of thislibrary
format will add fields to the end of these structures. Unsupported or unused fields in data
structures should return zero.

Summary of Library Functions
The API library functions are organized in this document according to the following categories:

Library Version Information

ns GetLibrarylnfo— get library version information

Managing Neural Data Files

ns OpenFile— opens aneura datafile
ns GetFilel nfo —retrieves file information and entity counts
ns CloseFile — closes aneura datafile

Genera Entity Information

ns GetEntitylnfo — retrieves general entity information and type

Accessing Event Entities

ns GetEventlnfo — retrieves information specific to event entities
ns GetEventData — retrieves event data by index

Accessing Analog Entities

ns _GetAnaloglnfo — retrieves information specific to analog entities
ns _GetAnalogData — retrieves analog data by index

Accessing Segment Entities

ns_GetSegmentInfo — retrieves information specific to segment entities

ns GetSegmentSourcel nfo — retrieves information about the sources that generated
the segment data
ns GetSegmentData — retrieves segment data by index

Accessing Neural Event Entities

ns GetNeurallnfo —retrieves information for neural event entities
ns GetNeuralData — retrieves neural event data by index

Searching Entity Indexes
ns GetlndexByTime—retrieves an entity index by time

ns GetTimeBylndex —retrieves time range from entity indexes

Retreive Error M essages

ns GetL astErrorMsg — retrieves the most recent text error message

10

All Neuroshare-compliant libraries must export all of the above functions along with platform
specific functions for opening, closing and dynamically linking libraries (e.g., the DIIMain()
function in Win32 DLLYS).

The data structures required by the above functions are defined following the calling function
specification.

Library Function Arguments

Modifiable arguments are passed to functions by pointersin this specification. If areference
argument, or pointer, isnot to retrieve data values, it is set to NULL in the function call.

Library Function Returns

All of the Neuroshare API functions return a 32-bit integer declared astypens RETURN. This
valueis aways zero (ns_OK) if the function succeeds. The complete enumeration of the return
values are listed below:

Return Code Value Description

ns_OK 0 Function successful

ns_LI BERROR -1 Generic linked library error

ns _TYPEERROR -2 Library unable to open file type

ns FI LEERROR -3 File access or read error

ns_BADFI LE -4 Invalid file handle passed to function
ns_BADENTITY -5 Invalid or inappropriate entity identifier specified
ns BADSOURCE -6 Invalid source identifier specified

ns_BADI NDEX -7 Invalid entity index specified

Multiple I nstance and M ulti-threaded Oper ation

It isimportant to recognize that APl DLLs may be loaded simultaneously by more than one
application. In Win32 operating systems, each DLL isloaded and executed within its own
virtual memory space by default. However, it is possible for DLLsto register globa memory
spaces for data that are shared between multiple executing copies of the same DLL. In situations
where multiple applications use alibrary to access the same datafile, it may be advantageous for
libraries to share some memory regarding datafiles. Thistype of memory sharing is beyond the
scope of thislibrary definition and left to the devel opers of each API DLL.

In modern multi-threaded operating systems, it is possible for users to write an application that
can call DLL functions simultaneously in more than one thread. For applications using
Neuroshare libraries, thiswill probably not lead to increased data throughput due to disk and
operating system bottlenecks. However, there are some situations that might benefit from multi-
threaded accessto libraries and data. For example, it is not uncommon for spike-sorting
applications to allow usersto display and configure one channel while operating on another.

11

For Neuroshare API libaries, the decision of whether or not to make alibrary safe for multi-
threaded operation isleft to the library developer. Libraries can report their thread safety level in
thens LIBRARY INFO data structure returned by the ns_GetLibrarylnfo function. Libraries that
claim to be safe for simultaneous, pre-empted calls to their functions must include the spin locks
or key atomic accesses necessary for this mode of operation.

Library L oading and Resour ce Allocation

Libraries will need to allocate system resources when loaded to manage internal variables and
open files. However, applications may open several libraries simply to call their
ns_GetLibrarylnfo functions as part of an open-file dialog box. Because of this, library
developers are encouraged to minimize the amount of system resources used by libraries until
files are opened with the library.

Recommended Library I nstallation

In order to standardize where applications find a particular Neuroshare library, it is highly
recommended that libraries be placed in one of two locations. Thefirst location to search for a
library is a sub-folder named “NeuroshareLibraries” within the local application folder (where
the executable resides). This version of the library takes precedence over other versions installed
on the system. Alternate |ocations are to be specified by the system registry. Upon installation
of the library, the system registry is set up to provide information about the library and its
location on the system. It is suggested to set up the registry with the following sub-keys named
“Neuroshare\ Neuroshare Libraries” within the tree of
HKEY_LOCAL_MACHINE\SOFTWARE. The “Neuroshare Libraries’ subtree contains entries
for theindividual libraries labeled “Library Version”, and “Path”, which contain information on
the version of the library and the path where the library can be found.

=== HKEY_LOCAL_MACHINE

E HARDWARE

E SECURITY

E SOFTWARE
4% Neuroshare

Neuroshare Libraries

ﬁLibrary Name
REG_SZ: Library Version

REC_SZ: Library Path

12

Library Version and File Support Functions

ns GetLibrarylnfo

Usage

ns RESULT ns_GetLibrarylnfo (ns_LIBRARYINFO *pLibrarylnfo,
uint32 dwLibrarylnfoSze)

Description
Obtains information about the API library.

Parameters

pLiblnfo Pointer to structure to receive library version information.
dwLibinfoSze Allocated sizein bytesfor ns_LIBRARY INFO structure.

Return Values

Thisfunction returns ns_OK if the datais successfully retrieved. Otherwise one of the
following error codesis generated:

ns_LI BERROR Library Error

13

ns LIBRARYINFO

typedef struct {
uint32 dwLibVersionMaj;
uint32 dwLibVersionMin;
uint32 dwAPIVersionMaj;
uint32 dwAPIVersionMin;
char szDescription[64];
char szCreator[64];
uint32 dwTime Year;
uint32 dwTime Month;
uint32 dwTime _Day;
uint32 dwklags;
uint32 dwMaxFiles
uint32 dwrileDescCount;
ns_FILEDESC FileDesc[16];

} ns_LIBRARYINFO;

Remarks
Flags defined at thistime are:

/[Magjor version number of thislibrary.

/I Minor version number of thislibrary.

I/ Mgjor version number of API specification that library complies with
/I Minor version number of API specification that library complies with
/I Text description of the library.

// Name of library creator.

/'Y ear of last modification date

/l Month (1-12; January = 1) of last modification date

// Day of the month (1-31) of last modification date

// Additional library flags.

/I Maximum number of files library can simultaneously open.

// Number of valid description entriesin the following array.

Il Text descriptor of filesthat the DLL can interpret.

#definens_LIBRARY_DEBUG 0x01 //'includes debug info linkage
#definens_LIBRARY_MODIFIED 0x02 /I file was patched or modified
#definens_LIBRARY _PRERELEASE 0x04 /I pre-release or beta version
#definens_LIBRARY_SPECIALBUILD 0x08 /I different from release version

#definens_LIBRARY_MULTITHREADED 0x10 //library is multithread safe

The dwFileDescCount and FileDesc fields provide a method for the library to describe
thefiletypesthat it is capable of opening. Thens LIBRARYINFO structure provides
room for up to 16 file types. The number of valid ns_FILEDESC structures are reported
in dwFileDescCount. Unused ns FILEDESC structures should be set to al zeros or not

returned.

Neural Event Files File formats that consist of pools of filesin adirectory that belong to a
single data set should be opened with an index file or one of the pool member files.

typedef struct {
char szDescription[32];
char szExtension[8] ;
char szMacCodeq 8] ;
char szMagicCode] 16] ;
} ns_FILEDESC;

/I Text description of the file type or file family

/I Extension used on PC, Linux, and Unix Platforms.

/I Application and Type Codes used on Mac Platforms.
/I null-terminated code used at the file beginning.

14

Managing Neural Data Files
The following functions open and close neural datafiles and provide generd file information.

ns OpenFile

Usage
ns RESULT ns_OpenFile (const char * pszFilename, uint32 *hFile)

Description

Opensthefile specified by pszFilename and returns afile handle, hFile that is used to access
the opened file.

Parameters

pszFilename Pointer to a null-terminated string that specifies the name of the file to open.
hFile Handle to the opened file. Thisvalueis returned by the function and is used
for subsequent file operations within the library.

Return Vaues

Thisfunction returns ns_OK if thefileis successfully opened. Otherwise one of the
following error codes is generated:

ns_TYPEERROR Library unable to open file type
ns_FlI LEERROR File access or read error
ns_LI BERROR Library Error

Remarks

All files are opened for read-only, as no writing capabilities have been implemented. If the
command succeeds in opening the file, the application should call ns_CloseFile for each open
file before terminating.

Thefile handle hFileis afile enumeration created by the library and is recognizable only
within the library. If thefileisinvalid or thereis no file associated with it, aNULL file
handleis returned.

15

ns GetFilelnfo

Usage
ns RESULT ns_GetFilelnfo (uint32 hFile, ns_FILEINFO *pFilelnfo,
uint32 dwkilelnfoSze);

Description

Provides general information about the data file referenced by hFile. Thisinformation is
returned in the structure pointed to by pFilelnfo. The number of bytes allocated for the file
information structure is given by dwFilelnfoSze.

Parameters
hFile Handle to an open file.
pFilelnfo Pointer to the ns_FILEINFO structure that receives the file information.

dwFilelnfoSze Allocated sizein bytesfor thens FILEINFO structure.

Return Vaues

Thisfunction returns ns_OK if the file information is successfully retrieved. Otherwise one
of the following error codes is generated:

ns_FI LEERROR File access or read error
ns_BADFI LE Invalid file handle passed to function
ns_LI BERROR Library Error

16

ns FILEINFO

typedef struct {

char szFileType[32];
uint32 dwEntityCount;

double dTimeStampResol ution
double dTimeSpan;

char szAppName| 64];
uint32 dwTime Year,;
uint32 dwTime_Month;
uint32 dwReserved;
uint32 dwTime_Day;
uint32 dwTime Hour;
uint32 dwTime _Min;
uint32 dwTime Sec;
uint32 dwTime MilliSec;
char szFileComment[256];

} ns_FILEINFO;

Remarks

// Human readable manufacturer’ s file type descriptor.

/I Number of entitiesin the datafile. This number is used
[/l to enumerate all the entitiesin the datafile from 0 to

/I (dwEntityCount —1) and to identify each entity in

/ function calls (dwEntityI D).

/I Minimum timestamp resolution in seconds.

/I Time span covered by the data file in seconds.
/I Information about the application that created the file.
I1'Y ear.

/[Month (1-12; January = 1).

// ' Used to be - Day of the week (Sunday = 0).

// Day of the month (1-31).

// Hour since midnight (0-23).

/I Minute after the hour (0-59).

/I Seconds after the minute (0-59).

/I Milliseconds after the second (0-1000).

/I Comments embedded in the sourcefile.

The time and date variables in the ns_FILEINO structure refer to the beginning (time zero in
the source file) of the time span to which the datais referenced.

17

ns CloseFile

Usage
ns RESULT ns_CloseFile (uint32 hFile);

Description
Closes apreviously opened file specified by the file handle hFile.

Parameters
hFile Handle to an open file.

Return Values

This function returns ns_OK when the file is successfully closed. Otherwise the following
error code is generated:

ns_BADFI LE Invalid file handle passed to function.

18

General Entity I nfor mation

The functions described below provide general information about the data entitiesin the file.
The total number of data entities available can be obtained from the ns_FILEINFO structure.
The entities are enumerated from O to (the number of entities- 1). All of the subsequent

information and data access functions require an entity index to be specified in the dwEntitityl D

field.

ns GetEntitylnfo

Usage
ns RESULT ns_GetEntitylnfo (uint32 hFile, uint32 dwEntitylD,

ns ENTITYINFO * pEntitylnfo, uint32 dwEntitylnfoS ze);

Description

Retrieves genera information about the entity, dwEntityl D, from the file referenced by the
file handle hFile. Theinformation is passed in the structure pointed to by pEntitylnfo. The
number of bytes allocated for ns ENTITYINFO is specified by dwEntitylnfoSze.

Parameters
hFile Handle to an open file.
dwEntitylD Identification number of the entity in the datafile. The total number of

entitiesin the datafileis provided by the member dwEntityCount in the
ns_FILEINFO structure.
pEntitylnfo Pointer to ans ENTITYINFO structure to receive entity information.
dwEntitylnfoSze Allocated sizein bytesfor thens ENTITY INFO structure..

Return Vaues

This function returns ns_OK if the information is successfully retrieved. Otherwise one of
the following error codes is generated:

ns_BADFI LE Invalid file handle passed to function
ns_BADENTI TY Invalid or inappropriate entity identifier specified
ns_FlI LEERROR File access or read error

ns_LI BERROR Library Error

19

ns ENTITYINFO

typedef struct {
char szEntityLabel[32] ;
uint32 dwEntityType;

uint32 dwltemCount;
} ns ENTITYINFO;

/I Specifies the label or name of the entity.

Il Flag specifying the type of entity datarecorded on this
// channel. It can be one of the following:

/1 # define ns ENTITY_UNKNOWN 0
/I # definens ENTITY_EVENT 1
/I # definens ENTITY_ANALOG 2
/] # definens ENTITY _SEGMENT 3
/ # definens ENTITY_NEURALEVENT 4

// Number of dataitems for the specified entity in the file.

20

Accessing Event Entities
The following functions retrieve information and data for Event Entities.

ns GetEventinfo

Usage
ns RESULT ns_GetEventInfo (uint32 hFile, uint32 dwEntityl D,

ns EVENTINFO * pEventinfo, uint32 dwEventinfoS ze);

Description

Retrieves information from the file referenced by hFile about the Event Entity, dwEntityl D,
in the structure pointed to by pEventsinfo. The structure has an allocated size of
dwEventInfoS ze bytes.

Parameters
hFile Handle to an open file.
dwEntitylD |dentification number of the entity in the datafile.
pEventsinfo Pointer to ans EVENTINFO structure to receive the Event Entity

information.
dwEventinfoSze Allocated size in bytes for thens EVENTINFO structure.

Return Vaues

Thisfunction returns ns_OK if the information is successfully retrieved. Otherwise one of
the following error codes is generated:

ns_BADFI LE Invalid file handle passed to function
ns_BADENTI TY Invalid or inappropriate entity identifier specified
ns_FlI LEERROR File access or read error

ns_LI BERROR Library Error

21

ns EVENTINFO

typedef struct {
uint32 dwEventType;

uint32 dwMinDatal ength;
uint32 dwMaxDatal ength;
char szCSVDesc [128];

} ns EVENTINFO;

/I A type code describing the type of event data associated with
Il each indexed entry. The following information types are

/I dlowed:

I #definens EVENT TEXT O
Il #definens EVENT_CSV 1
Il #definens EVENT BYTE 2
Il #definens EVENT _WORD 3
Il #definens EVENT_DWORD 4

/ltext string

//comma separated values
// 8-bit binary values
//16-bit binary values
//32-bit binary values

/I Minimum number of bytes that can be returned for an Event.

Il Maximum number of bytes that can be returned for an Event.
I/ Provides descriptions of the datafields for CSV Event Entities.

22

ns GetEventData

Usage
ns RESULT ns_GetEventData (uint32 hFile, uint32 dwEntityl D, uint32 dwlndex,
double * pdTimeSamp, void * pData,
uint32 dwDataBuffer Sze, uint32 *pdwDataRetS ze);

Description

Returns the data values from the file referenced by hFile and the Event Entity dwEntitylD.
The Event data entry specified by dwlndex is written to pData and the timestamp of the entry
isreturned to pdTimeStamp. dwDataBuffer Sze specifies the size in bytes allocated to the
buffer at pData. The pointer pdwDataRetS ze gives the actual number of bytes of data
retrieved to the buffer.

Parameters

hFile Handle to an open file.

dwEntitylD |dentification number of the entity in the datafile.

dwlindex The index number of the requested Event dataitem.

pdTimeStamp Pointer to a variable that receives the timestamp of the Event dataitem.

pData Pointer to a buffer that receives the datafor the Event entry. The format
of Event datais specified by the member dwEventTypein
ns EVENTINFO.

dwDataBuffer Sze The number of bytes allocated to the recelving data buffer.
pdwDataRetSze Pointer to avariable that receives the actual number of bytes of data
retrieved in the data buffer.

Return Vaues

Thisfunction returns ns_OK if the information is successfully retrieved. Otherwise one of
the following error codes is generated:

ns_BADFI LE Invalid file handle passed to function
ns_BADENTI TY Invalid or inappropriate entity identifier specified
ns_BADI NDEX Invalid entity index specified

ns_FI LEERROR Fileaccessor read error

ns_LI BERROR Library Error

23

Accessing Analog Entities
The following functions retrieve information and data for Analog Entities.

ns GetAnaloglnfo

Usage

ns RESULT ns_GetAnaoglnfo (uint32 hFile, uint32 dwEntitylD,
ns ANALOGINFO *pAnaloglnfo,
uint32 dwAnal oglnfoSze);

Description

Returns information about the Analog Entity associated with dwEntitylD and the file hFile.

The information is stored in ans ANALOGINFO structure, pointed to by
pAnalogSourcelnfo. The sizein bytes allocated for ns ANALOGINFO is specified by
dwAnaloglnfoSze.

Parameters
hFile Handle to an open file.
dwEntitylD |dentification number of the entity in the datafile.
pAnal ogSour cel nfo Pointer to ans ANALOGINFO structure.
dwAnaloglnfoSze Allocated sizein bytesfor ns ANALOGINFO structure.
Return Values

This function returns ns_OK if the information is successfully retrieved. Otherwise one of
the following error codes is generated:

ns_BADFI LE Invalid file handle passed to function
ns_BADENTI TY Invalid or inappropriate entity identifier specified
ns_FlI LEERROR File access or read error

ns_LI BERROR Library Error

24

ns ANALOGINFO

typedef struct{
double dSampleRate;
double dMinVal;
double dMaxVal;
char szUnitg 16] ;
double dResolution;

double dLocationX;
double dLocationY,;
double dLocationZ;
double dLocationUser;

double dHighFreqCorner;
uint32 dwHighFregOrder;
char szHighFilter Type[16] ;
double dLowFreqgCorner;
uint32 dwLowFregqOrder;
char szLowFilter Type[16];
char szProbelnfo[128];

} ns_ ANALOGINFO;

Il The sampling rate in Hz used to digitize the analog val ues.
/l Minimum possible value of the input signal.

// Maximum possible value of the input signal.

Il Specifies the recording units of measurement.

// Minimum input step size that can be resolved.
/Il (E.g. for a+/- 1 Volt 16-bit ADC this value is .0000305).

/l X coordinate of source in meters.
/'Y coordinate of source in meters.
/! Z coordinate of source in meters.

I/l Additional manufacturer-specific position information
I (e.g. electrode number in atetrode).

// High frequency cutoff in Hz of the source signal filtering.
/I Order of the filter used for high frequency cutoff.

Il Type of filter used for high frequency cutoff (text format).
/I Low frequency cutoff in Hz of the source signal filtering.

Il Order of the filter used for low frequency cutoff.

Il Type of filter used for low frequency cutoff (text format)..
/[Additional text information about the signal source.

25

ns GetAnalogData

Usage
ns RESULT ns_GetAnalogData (uint32 hFile, uint32 dwEntityl D, uint32 dwSartindex,
uint32 dwlndexCount, uint32 * pdwContCount,
double *pData);

Description
Returns the data values associated with the Analog Entity indexed dwEntitylD in thefile
referenced by hFile. Theindex of thefirst data value is dwStartindex and the requested
number of data samplesis given by dwindexCount. The requested data values are returned in
the buffer pointed to by pData.

Although the samplesin an analog entity are indexed, they are not guaranteed to be
continuous in time and may contain gaps between some of the indexes. When the requested
dataisreturned, pdwContCount contains the number of Analog items, starting from
dwStartIndex, which do not contain atime gap.

If the index range specified by dwStartindex to dwStartlndex+ dwlndexCount contains
invalid indexes, the function will return ns BADINDEX.

Parameters
hFile Handle to an open file.
dwEntitylD |dentification number of the Analog Entity in the datafile.

dwStartindex Starting index number of the analog data item.

dwindexCount ~ Number of analog valuesto retrieve.

pdwContCount ~ Number of continuous data valuesretrieved. Thisfield isignored if the
pointer is set to NULL.

pData Pointer to an array of double precision values to receive the analog data.
The user application must allocate sufficient space to hold dwlndexCount
double values or dwlndexCount* sizeof (double) bytes. If this pointeris
NULL, no datais returned

Return Vaues

This function returns ns_OK if the information is successfully retrieved. Otherwise one of
the following error codes is generated:

ns_BADFI LE Invalid file handle passed to function
ns_BADENTI TY Invalid or inappropriate entity identifier specified
ns_BADI NDEX Invalid entity index or range specified

ns_FI LEERROR Fileaccessor read error

ns_LI BERROR Library Error

26

Accessing Segment Entities
The following functions retrieve information and data for Segment Entities.

ns _GetSegmentinfo

Usage
ns RESULT ns_GetSegmentInfo (uint32 hFile, uint32 dwEntityl D,
ns SEGMENTINFO * pdwSegmentlnfo,
uint32 dwSegmentinfoS ze);

Description

Retrieves information on the Segment Entity, dwEntityl D, in the file referenced by the handle
hFile. Theinformation iswritten to the ns SEGMENTINFO structure at pdwSegmentinfo.
The size of memory in bytes alocated for the ns SEGMENTINFO structure is specified by
dwSegmentinfoS ze.

Parameters
hFile Handle to an open file.
dwEntitylD Identification number of the entity in the datafile.

pdwSegmentinfo Pointer to the structure ns SEGMENTINFO that receives generd
segment information for the requested Segment Entity.
dwSegmentinfoSze Allocated size in bytes for the structure ns SEGMENTINFO.

Return Vaues

This function returns ns_OK if the information is successfully retrieved. Otherwise one of
the following error codes is generated:

ns_BADFI LE Invalid file handle passed to function
ns_BADENTI TY Invalid or inappropriate entity identifier specified
ns_FlI LEERROR File access or read error

ns_LI BERROR Library Error

27

ns SEGMENTINFO

typedef struct {
uint32 dwSourceCount;

uint32 dwMinSampleCount;
uint32 dwMaxSampleCount;
double dSampleRate;
char szUnitg 32] ;

} ns SEGMENTINFO;

// Number of sources contributing to the Segment Entity data.
Il For example, with tetrodes, this number would be 4.

[l Minimum number of samplesin each Segment dataitem.
/l Maximum number of samplesin each Segment data item.
/Il The sampling rate in Hz used to digitize source signals.

/I Specifies the recording units of measurement.

28

ns GetSegmentSour cel nfo

Usage

ns RESULT ns_GetSegmentSourcelnfo (uint32 hFile, uint32 dwEntityl D,

Description

uint32 dwSourcel D,
ns SEGSOURCEINFO *pSourcel nfo,
uint32 dwSour celnfoS ze);

Retrieves information about the source entity, dwSourcel D, for the Segment Entity identified
by dwEntitylD, from the file referenced by the handle hFile. Theinformation iswritten to
the ns SEGSOURCEINFO structure pointed to by pSourcelnfo. The sizein bytes allocated
for ns SEGSOURCEINFO is specified by dwSourcelnfoS ze.

Parameters

hFile
dwEntitylD
dwSourcel D
pSourcelnfo

dwSourcel nfoSze

Return Vaues

Handle to an open file.

| dentification number of the Segment Entity.

Identification number of the Segment Entity source.

Pointer to ans SEGSOURCEINFO structure that receives
information about the source.

Allocated size in bytes for ns SEGSOURCEINFO structure.

Thisfunction returns ns_OK if the information is successfully retrieved. Otherwise one of
the following error codes is generated:

ns_BADFI LE
ns_BADENTI TY
ns_BADSOURCE
ns_FI LEERROR
ns_LI BERROR

Remarks

Invalid file handle passed to function

Invalid or inappropriate entity identifier specified
Invalid source identifier specified

File access or read error

Library Error

The value of dwSourcel D is an integer index value ranging from O to dwSourceCount -1
(which isreturned by the function ns_GetSegmentinfo).

29

ns SEGSOURCEINFO

typedef struct {

double dMinVal:
double dMaxVal;
double dResolution;

double dSubSampleshift;

double dLocationX;
double dLocationy;
double dLocationZ;
double dLocationUser;

double dHighFreqCorner;
uint32 dwHighFreqOrder;
char szHighFilter Type[16] ;
double dLowFreqCorner;
uint32 dwlLowFreqOrder;
char szZLowFilter Type[16] ;
char szProbelnfo[128];

} ns_ SEGSOURCEINFO:

/l Minimum possible value of the input signal.
/I Maximum possible value of the input signal.

/[Minimum input step size that can be resolved.
Il (E.g. for a+/- 1 Volt 16-bit ADC thisvalueis.0000305).

/Il Time difference (in sec) between the nominal timestamp
// and the actual sampling time of the source probe. This

Il value will be zero when all source probes are sampled

I/ simultaneously.

/I X coordinate of source in meters.
/'Y coordinate of source in meters.
/! Z coordinate of source in meters.

/I Additional manufacturer-specific position information
I (e.g. electrode number in atetrode).

// High frequency cutoff in Hz of the source signal filtering.
I/ Order of the filter used for high frequency cutoff.

Il Type of filter used for high frequency cutoff (text format)
/Il Low frequency cutoff in Hz of the source signal filtering.
/I Order of the filter used for low frequency cutoff.

Il Type of filter used for low frequency cutoff (text format).
// Additional text information about the signal source.

30

ns GetSegmentData

Usage
ns RESULT ns_GetSegmentData (uint32 hFile, uint32 dwEntityl D, uint32 dwlndex,
double * pdTimeStamp, double *pData,
uint32 dwDataBuffer Sze, uint32 * pdwSampleCount,
uint32 * pdwUnitID);

Description
Returns the Segment data values in entry nindex of the entity dwEntitylD from thefile
referenced by hFile. The datavalues are returned in the buffer pointed to by pData. The
size in bytes alocated to the data buffer is specified by dwDataBuffer Sze. The timestamp of
the entry isreturned at pdTimeStamp. The actual number of samples written to the data
buffer is returned at pdwSampleCount.

The data buffer should be accessed as a 2-dimensional array for samples and sources.

In C, the array is declared as doubl e dat a[sour cecount] [maxsanpl ecount] ;
and the values are referenced by dat a[sour ce] [sanpl €]
With pointers, thereferenceis *(pDat a+(maxsanpl ecount *sour cecount) + sanpl e)

Parameters
hFile Handle to an open file.
dwEntitylD Identification number of the entity in the datafile.
dwlndex The index number of the requested Segment data item.
pdTimeStamp Pointer to the time stamp of the requested Segment data item.
pData Pointer to the buffer that isto recelve the requested data.
dwDataBuffer Sze Sizein bytes allocated to the data buffer pointed to by pData.
pdwSampleCount Pointer to the number of samples returned in the data buffer.
pdwUnitID Pointer to the unit classification code for the Segment Entity.
Remarks

The pdwUnitID field is a bit-field supporting multiple classification codes. A zero unit ID is
unclassified, bit O is set if the segment is noise or an artifact, bit 1 indicates unit 1 is present,
bit 2 indicates that unit 2 is present, etc.

Return Values

Thisfunction returnsns_OK if theinformation is successfully retrieved. Otherwise one of
the following error codes is generated:

ns_BADFI LE Invalid file handle passed to function
ns_BADENTI TY Invalid or inappropriate entity identifier specified
ns_BADI NDEX Invalid entity index specified

ns_FI LEERROR Fileaccessor read error

ns_LI BERROR Library Error

31

Accessing Neural Event Entities
The following functions retrieve information and data for Neural Entities.

ns GetNeurallnfo

Usage
ns RESULT ns_GetNeura Info (uint32 hFile, uint32 dwEntitylD,
ns NEURALINFO *pNeurallnfo,
uint32 dwNeural InfoS ze);

Description

Retrieves information on Neural Event entity dwEntitylD from the file referenced by hFile.
The information is returned in the structure ns NEURALINFO at the address pnNeuralInfo
The memory allocated in bytes for the structure ns NEURALINFO is given by
dwNeurallnfoSze.

Parameters
hFile Handle to an open file.
dwEntitylD |dentification number of the entity in the datafile.
pNeurallnfo Pointer to thens NEURALINFO structure to receive the Neural
Event information.
dwNeurallnfoSze Allocated size in bytesfor ns NEURALINFO structure.
Return Values

Thisfunction returns ns_OK if theinformation is successfully retrieved. Otherwise one of
the following error codes is generated:

ns_BADFI LE Invalid file handle passed to function
ns_BADENTI TY Invalid or inappropriate entity identifier specified
ns_FI LEERROR File access or read error

ns_LI BERROR Library Error

32

ns NEURALINFO

typedef struct {

uint32 dwSourcekntitylD; // Optional ID number of asource entity. If the Neural Eventis
/Il derived from other entity sources, such as Segment Entities,
/I thisvalue links the Neural Event back to the source.

uint32 dwSourceUnitiD; I/ Optional sorted unit ID number used in the source Entity.

char szProbelnfo[128]; /I Text information about the source probe or the label of a
Il source Segment Entity.

} ns_ NEURALINFO;

33

ns GetNeuralData

Usage
ns RESULT ns_GetNeura Data(uint32 hFile, uint32 dwEntityl D, uint32 dwStartindex,

uint32 dwlndexCount, double * pData)

Description
Returns an array of timestamps for the neural events of the entity specified by dwEntitylD
and referenced by the file handle hFile. Theindex of the first timestamp is nSartindex and
the requested number of timestamps is given by dwlndexCount. The timestamps are returned
in the buffer pointed to by pData

Parameters
hFile Handle to an open file.
dwEntitylD |dentification number of the entity in the datafile.
dwStartlndex First index number of the requested Neural Events timestamp.
dwlndexCount Number of timestamps to retrieve.
pData Pointer to an array of double precision timestamps. The user
application must allocate sufficient space (
dwlndexCount* sizeof (double) bytes) to hold the requested data.
Return Values

Thisfunction returns ns_OK if the information is successfully retrieved. Otherwise one of
the following error codes is generated:

ns_BADFI LE Invalid file handle passed to function
ns_BADENTI TY Invalid or inappropriate entity identifier specified
ns_BADI NDEX Invalid entity index specified

ns_FI LEERROR Fileaccessor read error

ns_LI BERROR Library Error

34

Sear ching Entity | ndexes

All of the data access functions defined in this APl enumerate their data entries by index. The
functions described in this section can be used to link these indexes with time.

ns GetlndexByTime

Usage

ns RESULT ns_GetIndexByTime(uint32 hFile, uint32 dwEntitylD, double dTime,
int32 nFlag, uint32 * pdwl ndex)

Description

Searchesin the file referenced by hFile for the data item identified by the index dwEntitylD.
The flag specifies whether to locate the data item that starts before or after the time dTime.
The index of the requested dataitem is returned at pdwlndex.

Parameters
hFile Handle to an open file
dwEntitylD |dentification number of the entity in the datafile.
dTime Time of the data to search for
nFlag Flag specifying whether the index to be retrieved belongs to the data item
occurring before or after the specified time dTime. The flags are defined:
#definens BEFORE -1 // return the data entry occuring before
/[and inclusive of the time dTime.
#definens CLOSEST 0 // return the data entry occuring at or closest
// to thetime dTime
#definens AFTER +1 // return the data entry occuring after
/[and inclusive of the time dTime.
pawlndex Pointer to variable to receive the entry index.
Return Values

Thisfunction returns ns_OK if theinformation is successfully retrieved. Otherwise one of
the following error codes is generated:

ns_BADFI LE Invalid file handle passed to function

ns_BADENTI TY Invalid or inappropriate entity identifier specified

ns_FI LEERROR Fileaccessor read error

ns_BADI NDEX Unable to find an valid index given the search parameters
ns_LI BERROR Library Error

35

ns GetTimeBylndex

Usage
ns RESULT ns_GetTimeByIndex(uint32 hFile, uint32 dwEntityl D, uint32 dwlndex,
double * pdTime)
Description

Retrieves the timestamp for the entity identified by dwEntitylD and numbered dwlndex, from

the datafile referenced by hFile. The timestamp isreturned at pdTime.

Parameters
hFile Handle to an open file
dwEntitylD |dentification number of the entity in the datafile.
dwlindex Index of the requested data.
pdTime Pointer to the variable to receive the timestamp.
Return Values

Thisfunction returns ns_OK if the information is successfully retrieved. Otherwise one of
the following error codes is generated:

ns_BADFI LE Invalid file handle passed to function
ns_BADENTI TY Invalid or inappropriate entity identifier specified
ns_BADI NDEX Invalid entity index specified

ns_FI LEERROR Fileaccessor read error

ns_LI BERROR Library Error

36

Extended Error M essage Handler

The following function reports an extended text message about the last ns RESULT error
returned from a function call.

ns GetLastErrorMsg

Usage
ns RESULT ns_GetLastErrorM sg(char * pszM sgBuffer, uint32 dwM sgBufferSize)

Description

Returns the last error message in formatted text form to the buffer pointed to by
pszMsgBuffer. This function should be called immediately following a function whose
return value indicates that such a call will return useful data. Otherwise, the error set by
the failed function may be wiped out by more recent function calls. dwMsgBufferSze
specifies the size in bytes allocated to receive the text message.

The maximum size of the error message text is 256 characters.

Parameters

pszMsgBuffer Pointer to buffer to receive the text error message.
dwMsgBufferSze Allocated sizein bytes for the error message buffer.

Return Values

Thisfunction returns ns_OK if theinformation is successfully retrieved. Otherwise one of
the following error codes is generated:

ns_LI BERROR Library error

37

Revision History

Revision 0.9a —Beta draft produced after the first working group meeting (Jan 16-18, 2002). This meeting
included Tim Bergel (Cambridge Electronic Design Ltd.), Charlotte Gruner (Pronghorn Engineering), Shane
Guillory (Bionic Technologies, LLC), Hans Loffler (Multi Channel Systems MCS GmbH), Thane Plummer
(Neuraynx Inc.), Tony Reina (The Neurosciences Institute), Casey Stengel (Neuralynx Inc.), Angela Wang (Bionic
Technologies, LLC), Harvey Wiggins (Plexon Inc.), and Willard Wilson (Tucker-Davis Technologies). Draft
compiled by Shane Guillory and Angela Wang and published for public review and comment on March 27, 2002.

Revision 0.9b —Revisions made after first public review. Changes compiled by Shane Guillory and Angela
Wang. Clarified the role of Neural Event Entities as abstractions of the neural timing information from Event and
Segment entities. Added GetLibrarylnfo function and supporting data structure and eliminated the DLL version
method of getting library information. Added sections to discuss multi-instance, multi-threaded issues and provided
method for libraries to report multithread support in the Get Library Info function. Changed analog data gap
reporting method and clarified the descriptions. Added Unit Identification code field to the Segment Entity data
functions. Changed error codes to negative, sequentia values. Added minor language and grammatical corrections.
July 19, 2002.

Revision 0.9c

1. P8.line 26. In order to emphasize that multiple data files can be opened at once, the relevant words are put
in bold font. A minimum of 64 simultaneously open datafilesis required, system resources allowing.
A function to allow for extended error information reporting has been added.
GetL astError M sg(char *pszM sgBuffer, uint32 dwM sgBufferSize).
4) Add parameter to indicate the size in bytes of the allocated buffer to receive the datain the
following functions:
4. ns GetEventData (uint32 hFile, uint32 dwEntityl D, uint32 dwlndex,
5. double*pdTimeStamp, void *pData,
6. uint32 dwDataSze, uint32 *pdwDataRetSze);
7
8
9

wn

ns_GetSegmentData (uint32 hFile, uint32 dwEntityl D, int32 nindex,
double *pdTimeStamp, double *pData,
. uint32 dwDataBuffer Sze, uint32 * pdwSampleCount,

10. uint32 *pdwUnitl D)

11. p 14, In 26. Invalid file handles are defined to be NULL..

12. p 10. NULL function parameters that point to data, mean that no data for that parameter is to be returned

13. p 13. Two parameters added to ns_LIBRARY INFO to indicate the version number of the Neuroshare API
Specification that the library complies with. Jan-28-2003 AW

Revision 1.0

1. Removed Important message at bottom of title page.

2. p2. Revisions paragraph shortened.

3. p8. Added paragraph about multiple open datafiles. Included in pseudo-code another loop for opening
multiple datafiles.

4. pl2. Recommend using local directory and system registry to search for installed Neuroshare libraries.

5. Added ns_LIBERROR as possible error return to all functions.

6. p 26. Clarified that pdwContCount in ns_GetAnalogData means the number of continuous Analog items,
not the index number of the last continuous item.

7. Removed section Win32 DLL Structure. Feb-18-2003 AW

38

Revison 1.1

1. pl2. Changed thelabeling of the registry keysto use small case lettering. Changed pictorial
representation of the library entry information.

2. p3l. Change the access order of Segment data array, so that each row of the array represents a waveform
from one source. July-8-2003 AW

Revision 1.2

1. pl7. Enumeration of months startsat 1. i.e. January = 1
2. pl7. Added DayOfWeek member to ns FILEINFO structure to match published headers. July-17-2003
AW

Revision 1.3

1. pl7. Removed Day Of Week, and put “reserved” init's place
2. p3l. Updated index parameter in ns_GetSegmentData to be unsigned.

39

