
 1

Neuroshare API Specification
Rev 1.0

Application Programming Interface for
Accessing Neurophysiology Experiment Data Files

February 2003

 2

AFFILIATIONS
This standard is being developed and maintained through the Neuroshare Project. The purpose
of this project is to create open, standardized methods for accessing neurophysiological
experiment data from a variety of different data formats, as well as open-source software tools
based on these methods. All standards and software resulting from the Neuroshare Project are
distributed and revised through the http://www.neuroshare.org web site. Additional contact
information and project history can also be accessed through this site.

DISCLAIMER
This specification document is provided “as is” with no warranties whatsoever, including any
warranty of merchantability, non-infringement, fitness for any particular purpose, or any
warranty otherwise arising out of any proposal, specification or sample. The Neuroshare project
and the working group disclaim all liability relating to the use of information in this
specification.

TRADEMARKS
Windows and Microsoft are registered trademarks of the Microsoft Corporation. All other
product names are trademarks or service marks of their respective owners.

REVISIONS
This is the first release of the Neuroshare API Specification version 1.0.

COPYRIGHT AND DISTRIBUTION

This specification document is Copyrighted © 2003 by the maintainers of neuroshare.org and the
Neuroshare Project. This document may be freely distributed in its unmodified form. Modified
versions of this document must be clearly labeled as such and include descriptions of deviations
from the original text. Developers wishing to use this standard are referred to the official
Neuroshare Project web site (http://www.neuroshare.org) for the latest documents.

 3

Contents

Intended Scope and Usage.. 5
Representation of Data Types.. 6
Representation of Time .. 7
Structure of File Data ... 7
Conventions Used in this Library Specification... 9
Primitive Data Types .. 9
Summary of Library Functions ... 10
Library Function Arguments... 11
Library Function Returns.. 11
Multiple Instance and Multi-threaded Operation ... 11
Library Loading and Resource Allocation ... 12
Recommended Library Installation .. 12
Library Version and File Support Functions ... 13

ns_GetLibraryInfo... 13
ns_LIBRARYINFO .. 14

Managing Neural Data Files .. 15
ns_OpenFile.. 15
ns_GetFileInfo .. 16
ns_FILEINFO ... 17
ns_CloseFile ... 18

General Entity Information ... 19
ns_GetEntityInfo ... 19
ns_ENTITYINFO... 20

Accessing Event Entities... 21
ns_GetEventInfo.. 21
ns_EVENTINFO ... 22
ns_GetEventData .. 23

Accessing Analog Entities... 24
ns_GetAnalogInfo ... 24
ns_ANALOGINFO .. 25
ns_GetAnalogData.. 26

Accessing Segment Entities .. 27
ns_GetSegmentInfo ... 27
ns_SEGMENTINFO.. 28
ns_GetSegmentSourceInfo .. 29
ns_SEGSOURCEINFO... 30
ns_GetSegmentData.. 31

Accessing Neural Event Entities .. 32
ns_GetNeuralInfo.. 32
ns_NEURALINFO... 33

 4

ns_GetNeuralData .. 34
Searching Entity Indexes.. 35

ns_GetIndexByTime .. 35
ns_GetTimeByIndex .. 36

Extended Error Message Handler... 37
ns_GetLastErrorMsg .. 37

Revision History .. 38

 5

Intended Scope and Usage
The purpose of this Application Programming Interface (API) standard is to define a common
interface for accessing neurophysiology experiment data files. This common interface allows
neurophysiology applications to access data in a variety of proprietary file formats through
vendor-specific libraries. Such applications can include extracellular spike sorting programs,
data visualization utilities, and high-level neuroscience data analysis programs.

Neurophysiology User Application

Vendor X
Library

Vendor Y
Library

Vendor Z
Library

Vendor X
Data Files

Vendor Y
Data Files

Vendor Z
Data Files

Future Library for
Intermediate Format

Intermediate Format
Data Files

As of this revision, the API only defines functions necessary to extract information from data
files. At a future time, extensions may be provided to allow user applications to write/modify
data files. It is also possible that a simple intermediate data file format, based on the data
structures in this API, may be created for storing processed experiment information and sorted
spike timing information generated from other spike classification programs.

When complete, this document will contain all of the information required to develop both
libraries and user applications. Additional utilities and example source code for supporting the
development of libraries and applications will be made available on the neuroshare.org web site
as they are developed.

As of this revision, the specification is oriented towards 32-bit Microsoft Windows applications
through the use of Dynamic Link Libraries (DLLs). Whenever possible, portable coding
conventions will be used to support future ports to other 32-bit and 64-bit operating systems.

 6

Representation of Data Types
Although there are many types of data sources possible in neurophysiological experiments, this
API definition abstracts data into four basic categories or “Entity Types”. These are:

Event Entities – Discrete events that consist of small time-stamped text or binary data
packets. These are used to represent data such as trial markers, experimental events,
digital input values, and embedded user comments.

Analog Entities – Continuous, sampled data that represent digitized analog signals such
as position, force, and other experiment signals, as well as electrode signals such as EKG,
EEG and extracellular microelectrode recordings. Analog Entities may also contain gaps
in time from data files that do not record data between experimental trials.

Segment Entities – Short, time-stamped segments of digitized analog signals in which
the segments are separated by variable amounts of time. Segment Entities can contain
data from more than one source. They are intended to represent discontinuous analog
signals such as extracellular spike waveforms from electrodes or groups of electrodes.

Neural Event Entities – Timestamps of event and segment entitities that are known to
represent neural action potential firing times. For example, if a segment entity contains
sorted neural spike waveforms, each sorted unit is also exported as a neural entity. If an
event entity is known by the library to only contain neuron firing times, it should be
exported as a neural event entity instead of an event entity. This entity provides a simple,
efficient representation of neural firing times for high-level neuroscience analysis
programs. It avoids the problems of requiring applications to look for spike timing
within different entity types and the problems associated with decoding one or more unit
firing times from within single segment entries.

The API definition also provides functions for querying information about data files and the
entities contained in the data file. This information includes labels, metric units, timings, etc.

Data File or File Group
Trial Start/Stop Markers
Stimulus Information
Reward Information
Position Information
Force Information
EEG Data
EMG Data
Extracellular Spikes
Embedded Comments

File Information

Neuroshare
Compliant
API Library

for the
Data Format

Analog Entities

Segment Entities

Event Entities

Neural Event Entities

 7

Representation of Time
The API definition assumes that each data file consists of a single span of time. The timings of
all data presented by the library to user applications are referenced to the beginning of this span.

Some data formats organize data according to trials in which time is recorded within each trial,
but not between trials. Libraries that access these types of files must combine these trials into a
single time span and present an event entity that marks the beginning of each trial. Although this
is somewhat awkward, this abstraction makes the organization of trial-based files equivalent to
single time span files that use event markers to delineate trials.

Structure of File Data
Data entities in a data file are enumerated by the library from 0 to (total number of entities –1).
Each entity is one of the four types discussed in the Representation of Dates Types section above
and there are no requirements for ordering entities by type.

Each entity contains one or more indexed data entries that are ordered by increasing time. The
API provides functions for querying the characteristics of the file, the number of entities, and the
characteristics of each entity, including the number of indexes for each entity.

Entity 1

Entity (N-1)

Index 0 Index 1

Index 0

+

+

+
Data File

with
N Entities

Index 1 +

Entity 0 Index 0 Index 1 ++

The structure of the indexed data entries for each entity depends on the entity type:

Each index of an event entity refers to a timestamp and data combination. The number of
indexes is equal to the number of event entries for that event entity in the data file.

Each index of an analog entity refers to a specific digitized sample. Each analog entity
contains samples from a single channel and the number of indexes is equal to the number
of samples present for that channel. The time interval between successive samples is not
always the sampling period as there may be gaps in the acquisition of the data.

Each index of a segment entity refers to a short, time-stamped segment of analog data
from one or more sources. The number of indexes is equal to the number of entries for
that segment entity in the file.

Each index of a neural event entity refers to a timestamp for each neural event. Each
neural event entity contains event times for a single neural source. The number of
indexes is equal to the number of entries for that neural event entity.

 8

The API provides unified functions for searching for index ranges of an entity of any type by
time range, and functions are also provided to report the timing of an entity index.

The data abstraction listed above is somewhat demanding on the libraries, as it requires them to
organize, temporally sort and report data in the file according to type. This structure was chosen
to simplify the data representation for user applications that must analyze the data in these files.
The libraries were selected as the best place for this re-organization of data to occur as most
libraries have access to special knowledge about the particular file formats that they must handle.
It would be highly inefficient and complicated for user applications to import data from serial
packet streams into catalogs of available data with time and index search capabilities.

Libraries must properly manage memory to allow multiple files or file groups to be opened
simultaneously. The library should handle a minimum of 64 open data files. If system resources
constrain the number of concurrently opened files, the library ns_OpenFile function reports a
system error.

The prototypical loading sequence for the library and data files can be summarized by the
following pseudo-code:

Load Needed Library;
Repeat for Each Neural Data File,

Open Neural Data File;
 Get General File Information;
 Query Number of Entities;
 For Each Entity,
 Get Entity Type;
 Get Type Specific Entity Information;
 Repeat Main Operational Loop,
 Determine Entities of Interest;
 Search for Needed Indexes of Relevant Entities;
 Retrieve the Data for the Relevant Entities;
 Do Application-Specific Processing and Display;
 While Still Interested;
While Neural Data Files Remain;
Close All Neural Data Files;

Unload Library;

 9

Conventions Used in this Library Specification
The function definitions and data structures presented in this document will be specified
according to the C language syntax and convention. However, the actual language used to write
the libraries is irrelevant as libraries use a common linkage format for exported functions.

All Neuroshare-specific functions, constants and data types will include a “ns_” prefix.

The API functions in this specification utilize several text fields for descriptions, such as labels,
user comments, electrode locations, etc. The use of human readable text is encouraged wherever
possible in these fields along with simplified data representations. For example, if a vendor uses
a proprietary data packet format for position information in experiments, the vendor is
encouraged to include library code that presents this data as analog entities with labels such as
“POS X” and “POS Y”. In this initial version of the specification, all text information will be
reported in 8-bit ASCII format.

All analog values in this library, including time, shall use a 64-bit double-precision floating point
representation. All analog entities also include a text field for reporting measurement units such
as “meters”, “MPa”, “kg”. The use of metric units is strongly encouraged. Time is always
reported in seconds.

Primitive Data Types
To avoid ambiguity across platforms, the following primitive data types are explicitly defined:

 char 8-bit character value normally reserved for ASCII strings
 int8 8-bit (1 byte) signed integers
 uint8 8-bit (1 byte) unsigned integers
 int16 16-bit (2 byte) signed integers
 uint16 16-bit (2 byte) unsigned integers
 int32 32-bit (4 byte) signed integers
 uint32 32-bit (4 byte) unsigned integers
 double 64-bit, double precision floating point value

All of the data structures and functions detailed in this specification will use the above data
types. In this API specification, data types in functions and structures are rigidly defined so that
endianess issues should not be a problem in properly written code. Developers are discouraged
from making assumptions about byte ordering in the above primitive data types.

The default alignment for library data structure members is 4 bytes and the structures have been
declared with this alignment and should require no padding. Future revisions of this library
format will add fields to the end of these structures. Unsupported or unused fields in data
structures should return zero.

 10

Summary of Library Functions
The API library functions are organized in this document according to the following categories:

 Library Version Information

 ns_GetLibraryInfo – get library version information

 Managing Neural Data Files

 ns_OpenFile – opens a neural data file

 ns_GetFileInfo – retrieves file information and entity counts

 ns_CloseFile – closes a neural data file

 General Entity Information

 ns_GetEntityInfo – retrieves general entity information and type

 Accessing Event Entities

 ns_GetEventInfo – retrieves information specific to event entities

 ns_GetEventData – retrieves event data by index

 Accessing Analog Entities

 ns_GetAnalogInfo – retrieves information specific to analog entities

 ns_GetAnalogData – retrieves analog data by index

 Accessing Segment Entities

 ns_GetSegmentInfo – retrieves information specific to segment entities

 ns_GetSegmentSourceInfo – retrieves information about the sources that generated
the segment data

 ns_GetSegmentData – retrieves segment data by index

 Accessing Neural Event Entities

 ns_GetNeuralInfo – retrieves information for neural event entities

 ns_GetNeuralData – retrieves neural event data by index

 Searching Entity Indexes

 ns_GetIndexByTime – retrieves an entity index by time

 ns_GetTimeByIndex – retrieves time range from entity indexes

 Searching Entity Indexes

 ns_GetLastErrorMsg – retrieves the most recent text error message

 11

All Neuroshare-compliant libraries must export all of the above functions along with platform
specific functions for opening, closing and dynamically linking libraries (e.g., the DllMain()
function in Win32 DLLs).

The data structures required by the above functions are defined following the calling function
specification.

Library Function Arguments
Modifiable arguments are passed to functions by pointers in this specification. If a reference
argument, or pointer, is not to retrieve data values, it is set to NULL in the function call.

Library Function Returns
All of the Neuroshare API functions return a 32-bit integer declared as type ns_RETURN. This
value is always zero (ns_OK) if the function succeeds. The complete enumeration of the return
values are listed below:

 Return Code Value Description

 ns_OK 0 Function successful
 ns_LIBERROR -1 Generic linked library error
 ns_TYPEERROR -2 Library unable to open file type
 ns_FILEERROR -3 File access or read error
 ns_BADFILE -4 Invalid file handle passed to function
 ns_BADENTITY -5 Invalid or inappropriate entity identifier specified
 ns_BADSOURCE -6 Invalid source identifier specified
 ns_BADINDEX -7 Invalid entity index specified

Multiple Instance and Multi-threaded Operation
It is important to recognize that API DLLs may be loaded simultaneously by more than one
application. In Win32 operating systems, each DLL is loaded and executed within its own
virtual memory space by default. However, it is possible for DLLs to register global memory
spaces for data that are shared between multiple executing copies of the same DLL. In situations
where multiple applications use a library to access the same data file, it may be advantageous for
libraries to share some memory regarding data files. This type of memory sharing is beyond the
scope of this library definition and left to the developers of each API DLL.

In modern multi-threaded operating systems, it is possible for users to write an application that
can call DLL functions simultaneously in more than one thread. For applications using
Neuroshare libraries, this will probably not lead to increased data throughput due to disk and
operating system bottlenecks. However, there are some situations that might benefit from multi-
threaded access to libraries and data. For example, it is not uncommon for spike-sorting
applications to allow users to display and configure one channel while operating on another.

 12

For Neuroshare API libaries, the decision of whether or not to make a library safe for multi-
threaded operation is left to the library developer. Libraries can report their thread safety level in
the ns_LIBRARYINFO data structure returned by the ns_GetLibraryInfo function. Libraries that
claim to be safe for simultaneous, pre-empted calls to their functions must include the spin locks
or key atomic accesses necessary for this mode of operation.

Library Loading and Resource Allocation
Libraries will need to allocate system resources when loaded to manage internal variables and
open files. However, applications may open several libraries simply to call their
ns_GetLibraryInfo functions as part of an open-file dialog box. Because of this, library
developers are encouraged to minimize the amount of system resources used by libraries until
files are opened with the library.

Recommended Library Installation
In order to standardize where applications find a particular Neuroshare library, it is highly
recommended that libraries be placed in one of two locations. The first location to search for a
library is a sub-folder named “NeuroshareLibraries” within the local application folder (where
the executable resides). This version of the library takes precedence over other versions installed
on the system. Alternate locations are to be specified by the system registry. Upon installation
of the library, the system registry is set up to provide information about the library and its
location on the system. It is suggested to set up the registry with the following sub-keys named
“NEUROSHARE\ NEUROSHARE LIBRARIES” within the tree of
HKEY_LOCAL_MACHINE\SOFTWARE. The NEUROSHARE LIBRARIES subtree contains
entries for individual libraries with sub-keys labeled “Library Version”, “Data Files”, and
“Path”, which contain information on the company, the version of the library, the data files it
supports and the path name of the library.

.

HKEY_LOCAL_MACHINE

HARDWARE

SOFTWARE

SAM

SECURITY

NEUROSHARE

-

Library Name

Library Version

 Data Files

Path

NEUROSHARELiBRARIES

+

+

+

-

+

+

+

-

-

-

 13

Library Version and File Support Functions

ns_GetLibraryInfo

Usage

ns_RESULT ns_GetLibraryInfo (ns_LIBRARYINFO *pLibraryInfo,

uint32 dwLibraryInfoSize)

Description

Obtains information about the API library.

Parameters

pLibInfo Pointer to structure to receive library version information.
dwLibInfoSize Allocated size in bytes for ns_LIBRARYINFO structure.

Return Values

This function returns ns_OK if the data is successfully retrieved. Otherwise one of the
following error codes is generated:

ns_LIBERROR Library Error

 14

ns_LIBRARYINFO
typedef struct {

uint32 dwLibVersionMaj; // Major version number of this library.

uint32 dwLibVersionMin; // Minor version number of this library.

uint32 dwAPIVersionMaj; // Major version number of API specification that library complies with

uint32 dwAPIVersionMin; // Minor version number of API specification that library complies with

char szDescription[64]; // Text description of the library.

char szCreator[64]; // Name of library creator.

uint32 dwTime_Year; // Year of last modification date

uint32 dwTime_Month; // Month (0-11; January = 0) of last modification date

uint32 dwTime_Day; // Day of the month (1-31) of last modification date

uint32 dwFlags; // Additional library flags.

uint32 dwMaxFiles // Maximum number of files library can simultaneously open.

uint32 dwFileDescCount; // Number of valid description entries in the following array.

ns_FILEDESC FileDesc[16]; // Text descriptor of files that the DLL can interpret.

} ns_LIBRARYINFO;

Remarks

Flags defined at this time are:

#define ns_LIBRARY_DEBUG 0x01 // includes debug info linkage
#define ns_LIBRARY_MODIFIED 0x02 // file was patched or modified
#define ns_LIBRARY_PRERELEASE 0x04 // pre-release or beta version
#define ns_LIBRARY_SPECIALBUILD 0x08 // different from release version
#define ns_LIBRARY_MULTITHREADED 0x10 // library is multithread safe
The dwFileDescCount and FileDesc fields provide a method for the library to describe
the file types that it is capable of opening. The ns_LIBRARYINFO structure provides
room for up to 16 file types. The number of valid ns_FILEDESC structures are reported
in dwFileDescCount. Unused ns_FILEDESC structures should be set to all zeros or not
returned.

Neural Event Files File formats that consist of pools of files in a directory that belong to a
single data set should be opened with an index file or one of the pool member files.
typedef struct {

char szDescription[32]; // Text description of the file type or file family

char szExtension[8]; // Extension used on PC, Linux, and Unix Platforms.

char szMacCodes[8]; // Application and Type Codes used on Mac Platforms.

char szMagicCode[16]; // null-terminated code used at the file beginning.

} ns_FILEDESC;

 15

Managing Neural Data Files
The following functions open and close neural data files and provide general file information.

ns_OpenFile

Usage

ns_RESULT ns_OpenFile (const char *pszFilename, uint32 *hFile)

Description

Opens the file specified by pszFilename and returns a file handle, hFile that is used to access
the opened file.

Parameters

pszFilename Pointer to a null-terminated string that specifies the name of the file to open.
hFile Handle to the opened file. This value is returned by the function and is used

for subsequent file operations within the library.

Return Values

This function returns ns_OK if the file is successfully opened. Otherwise one of the
following error codes is generated:

ns_TYPEERROR Library unable to open file type
ns_FILEERROR File access or read error
ns_LIBERROR Library Error

Remarks

All files are opened for read-only, as no writing capabilities have been implemented. If the
command succeeds in opening the file, the application should call ns_CloseFile for each open
file before terminating.

The file handle hFile is a file enumeration created by the library and is recognizable only
within the library. If the file is invalid or there is no file associated with it, a NULL file
handle is returned.

 16

ns_GetFileInfo

Usage

ns_RESULT ns_GetFileInfo (uint32 hFile, ns_FILEINFO *pFileInfo,

uint32 dwFileInfoSize);

Description

Provides general information about the data file referenced by hFile. This information is
returned in the structure pointed to by pFileInfo. The number of bytes allocated for the file
information structure is given by dwFileInfoSize.

Parameters

hFile Handle to an open file.
pFileInfo Pointer to the ns_FILEINFO structure that receives the file information.
dwFileInfoSize Allocated size in bytes for the ns_FILEINFO structure.

Return Values

This function returns ns_OK if the file information is successfully retrieved. Otherwise one
of the following error codes is generated:

ns_FILEERROR File access or read error
ns_BADFILE Invalid file handle passed to function
ns_LIBERROR Library Error

 17

ns_FILEINFO

typedef struct {

char szFileType[32]; // Human readable manufacturer’s file type descriptor.

uint32 dwEntityCount; // Number of entities in the data file. This number is used
// to enumerate all the entities in the data file from 0 to
// (dwEntityCount –1) and to identify each entity in
// function calls (dwEntityID).

double dTimeStampResolution // Minimum timestamp resolution in seconds.

double dTimeSpan; // Time span covered by the data file in seconds.

char szAppName[64]; // Information about the application that created the file.

uint32 dwTime_Year; // Year.

uint32 dwTime_Month; // Month (0-11; January = 0).

uint32 dwTime_Day; // Day of the month (1-31).

uint32 dwTime_Hour; // Hour since midnight (0-23).

uint32 dwTime_Min; // Minute after the hour (0-59).

uint32 dwTime_Sec; // Seconds after the minute (0-59).

uint32 dwTime_MilliSec; // Milliseconds after the second (0-1000).

char szFileComment[256]; // Comments embedded in the source file.

} ns_FILEINFO;

Remarks

The time and date variables in the ns_FILEINO structure refer to the beginning (time zero in
the source file) of the time span to which the data is referenced.

 18

ns_CloseFile

Usage

ns_RESULT ns_CloseFile (uint32 hFile);

Description

Closes a previously opened file specified by the file handle hFile.

Parameters

hFile Handle to an open file.

Return Values

This function returns ns_OK when the file is successfully closed. Otherwise the following
error code is generated:

ns_BADFILE Invalid file handle passed to function.

 19

General Entity Information
The functions described below provide general information about the data entities in the file.
The total number of data entities available can be obtained from the ns_FILEINFO structure.
The entities are enumerated from 0 to (the number of entities - 1). All of the subsequent
information and data access functions require an entity index to be specified in the dwEntitityID
field.

ns_GetEntityInfo

Usage

ns_RESULT ns_GetEntityInfo (uint32 hFile, uint32 dwEntityID,

ns_ENTITYINFO *pEntityInfo, uint32 dwEntityInfoSize);

Description

Retrieves general information about the entity, dwEntityID, from the file referenced by the
file handle hFile. The information is passed in the structure pointed to by pEntityInfo. The
number of bytes allocated for ns_ENTITYINFO is specified by dwEntityInfoSize.

Parameters

hFile Handle to an open file.
dwEntityID Identification number of the entity in the data file. The total number of

entities in the data file is provided by the member dwEntityCount in the
ns_FILEINFO structure.

pEntityInfo Pointer to a ns_ENTITYINFO structure to receive entity information.
dwEntityInfoSize Allocated size in bytes for the ns_ENTITYINFO structure..

Return Values

This function returns ns_OK if the information is successfully retrieved. Otherwise one of
the following error codes is generated:

ns_BADFILE Invalid file handle passed to function
ns_BADENTITY Invalid or inappropriate entity identifier specified
ns_FILEERROR File access or read error
ns_LIBERROR Library Error

 20

ns_ENTITYINFO

typedef struct {

char szEntityLabel[32]; // Specifies the label or name of the entity.

uint32 dwEntityType; // Flag specifying the type of entity data recorded on this
// channel. It can be one of the following:

// # define ns_ENTITY_UNKNOWN 0

// # define ns_ENTITY_EVENT 1

// # define ns_ENTITY_ANALOG 2

// # define ns_ENTITY_SEGMENT 3

// # define ns_ENTITY_NEURALEVENT 4

int32 dwItemCount; // Number of data items for the specified entity in the file.

} ns_ENTITYINFO;

 21

Accessing Event Entities
The following functions retrieve information and data for Event Entities.

ns_GetEventInfo

Usage

ns_RESULT ns_GetEventInfo (uint32 hFile, uint32 dwEntityID,

ns_EVENTINFO *pEventInfo, uint32 dwEventInfoSize);

Description

Retrieves information from the file referenced by hFile about the Event Entity, dwEntityID,
in the structure pointed to by pEventsInfo. The structure has an allocated size of
dwEventInfoSize bytes.

Parameters

hFile Handle to an open file.
dwEntityID Identification number of the entity in the data file.
pEventsInfo Pointer to a ns_EVENTINFO structure to receive the Event Entity

information.
dwEventInfoSize Allocated size in bytes for the ns_EVENTINFO structure.

Return Values

This function returns ns_OK if the information is successfully retrieved. Otherwise one of
the following error codes is generated:

ns_BADFILE Invalid file handle passed to function
ns_BADENTITY Invalid or inappropriate entity identifier specified
ns_FILEERROR File access or read error
ns_LIBERROR Library Error

 22

ns_EVENTINFO

typedef struct {

uint32 dwEventType; // A type code describing the type of event data associated with
// each indexed entry. The following information types are
// allowed:

// #define ns_EVENT_TEXT 0 //text string

// #define ns_EVENT_CSV 1 //comma separated values

// #define ns_EVENT_BYTE 2 // 8-bit binary values

// #define ns_EVENT_WORD 3 //16-bit binary values

// #define ns_EVENT_DWORD 4 //32-bit binary values

uint32 dwMinDataLength; // Minimum number of bytes that can be returned for an Event.

uint32 dwMaxDataLength; // Maximum number of bytes that can be returned for an Event.

char szCSVDesc [128]; // Provides descriptions of the data fields for CSV Event Entities.

} ns_EVENTINFO;

 23

ns_GetEventData

Usage

ns_RESULT ns_GetEventData (uint32 hFile, uint32 dwEntityID, uint32 dwIndex,

double *pdTimeStamp, void *pData,

uint32 dwDataBufferSize, uint32 *pdwDataRetSize);

Description

Returns the data values from the file referenced by hFile and the Event Entity dwEntityID.
The Event data entry specified by nIndex is written to pData and the timestamp of the entry
is returned to pdTimeStamp. dwDataBufferSize specifies the size in bytes allocated to the
buffer pointed to by pData. pdwDataRetSize specifies the actual amount of data in bytes
retrieved to the buffer.

Parameters

hFile Handle to an open file.
dwEntityID Identification number of the entity in the data file.
dwIndex The index number of the requested Event data item.
pdTimeStamp Pointer to a variable that receives the timestamp of the Event data item.
pData Pointer to a buffer that receives the data for the Event entry. The format

of Event data is specified by the member dwEventType in
ns_EVENTINFO.

dwDataBufferSize The number of bytes allocated to the receiving data buffer.
pdwDataRetSize Pointer to a variable that receives the actual number of bytes of data

retrieved in the data buffer.

Return Values

This function returns ns_OK if the information is successfully retrieved. Otherwise one of
the following error codes is generated:

ns_BADFILE Invalid file handle passed to function
ns_BADENTITY Invalid or inappropriate entity identifier specified
ns_BADINDEX Invalid entity index specified
ns_FILEERROR File access or read error
ns_LIBERROR Library Error

 24

Accessing Analog Entities
The following functions retrieve information and data for Analog Entities.

ns_GetAnalogInfo

Usage

ns_RESULT ns_GetAnalogInfo (uint32 hFile, uint32 dwEntityID,
ns_ANALOGINFO *pAnalogInfo,
uint32 dwAnalogInfoSize);

Description

Returns information about the Analog Entity associated with dwEntityID and the file hFile.
The information is stored in a ns_ANALOGINFO structure, pointed to by
pAnalogSourceInfo. The size in bytes allocated for ns_ANALOGINFO is specified by
dwAnalogInfoSize.

Parameters

hFile Handle to an open file.
dwEntityID Identification number of the entity in the data file.
pAnalogSourceInfo Pointer to a ns_ANALOGINFO structure.
dwAnalogInfoSize Allocated size in bytes for ns_ANALOGINFO structure.

Return Values

This function returns ns_OK if the information is successfully retrieved. Otherwise one of
the following error codes is generated:

ns_BADFILE Invalid file handle passed to function
ns_BADENTITY Invalid or inappropriate entity identifier specified
ns_FILEERROR File access or read error
ns_LIBERROR Library Error

 25

ns_ANALOGINFO

typedef struct{

double dSampleRate; // The sampling rate in Hz used to digitize the analog values.

double dMinVal; // Minimum possible value of the input signal.

double dMaxVal; // Maximum possible value of the input signal.

char szUnits[16]; // Specifies the recording units of measurement.

double dResolution; // Minimum input step size that can be resolved.
// (E.g. for a +/- 1 Volt 16-bit ADC this value is .0000305).

double dLocationX; // X coordinate of source in meters.

double dLocationY; // Y coordinate of source in meters.

double dLocationZ; // Z coordinate of source in meters.

double dLocationUser; // Additional manufacturer-specific position information
// (e.g. electrode number in a tetrode).

double dHighFreqCorner; // High frequency cutoff in Hz of the source signal filtering.

uint32 dwHighFreqOrder; // Order of the filter used for high frequency cutoff.

char szHighFilterType[16]; // Type of filter used for high frequency cutoff (text format).

double dLowFreqCorner; // Low frequency cutoff in Hz of the source signal filtering.

uint32 dwLowFreqOrder; // Order of the filter used for low frequency cutoff.

char szLowFilterType[16]; // Type of filter used for low frequency cutoff (text format)..

char szProbeInfo[128]; // Additional text information about the signal source.

} ns_ANALOGINFO;

 26

ns_GetAnalogData

Usage

ns_RESULT ns_GetAnalogData (uint32 hFile, uint32 dwEntityID, uint32 dwStartIndex,
uint32 dwIndexCount, uint32 *pdwContCount,
double *pData);

Description

Returns the data values associated with the Analog Entity indexed dwEntityID in the file
referenced by hFile. The index of the first data value is dwStartIndex and the requested
number of data samples is given by dwIndexCount. The requested data values are returned in
the buffer pointed to by pData.

Although the samples in an analog entity are indexed, they are not guaranteed to be
continuous in time and may contain gaps between some of the indexes. When the requested
data is returned, pdwContCount contains the number of Analog items, starting from
dwStartIndex, which do not contain a time gap.

If the index range specified by dwStartIndex to dwStartIndex+dwIndexCount contains
invalid indexes, the function will return ns_BADINDEX.

Parameters

hFile Handle to an open file.
dwEntityID Identification number of the Analog Entity in the data file.
dwStartIndex Starting index number of the analog data item.
dwIndexCount Number of analog values to retrieve.
pdwContCount Number of continuous data values retrieved. This field is ignored if the

pointer is set to NULL.
pData Pointer to an array of double precision values to receive the analog data.

The user application must allocate sufficient space to hold dwIndexCount
double values or dwIndexCount*sizeof(double) bytes. If this pointer is
NULL, no data is returned

Return Values

This function returns ns_OK if the information is successfully retrieved. Otherwise one of
the following error codes is generated:

ns_BADFILE Invalid file handle passed to function
ns_BADENTITY Invalid or inappropriate entity identifier specified
ns_BADINDEX Invalid entity index or range specified
ns_FILEERROR File access or read error
ns_LIBERROR Library Error

 27

Accessing Segment Entities
The following functions retrieve information and data for Segment Entities.

ns_GetSegmentInfo

Usage

ns_RESULT ns_GetSegmentInfo (uint32 hFile, uint32 dwEntityID,

ns_SEGMENTINFO *pdwSegmentInfo,

uint32 dwSegmentInfoSize);

Description

Retrieves information on the Segment Entity, dwEntityID, in the file referenced by the handle
hFile. The information is written to the ns_SEGMENTINFO structure at pdwSegmentInfo.
The size of memory in bytes allocated for the ns_SEGMENTINFO structure is specified by
dwSegmentInfoSize.

Parameters

hFile Handle to an open file.
dwEntityID Identification number of the entity in the data file.
pdwSegmentInfo Pointer to the structure ns_SEGMENTINFO that receives general

segment information for the requested Segment Entity.
dwSegmentInfoSize Allocated size in bytes for the structure ns_SEGMENTINFO.

Return Values

This function returns ns_OK if the information is successfully retrieved. Otherwise one of
the following error codes is generated:

ns_BADFILE Invalid file handle passed to function
ns_BADENTITY Invalid or inappropriate entity identifier specified
ns_FILEERROR File access or read error
ns_LIBERROR Library Error

 28

ns_SEGMENTINFO

typedef struct {

uint32 dwSourceCount; // Number of sources contributing to the Segment Entity data.
// For example, with tetrodes, this number would be 4.

uint32 dwMinSampleCount; // Minimum number of samples in each Segment data item.

uint32 dwMaxSampleCount; // Maximum number of samples in each Segment data item.

double dSampleRate; // The sampling rate in Hz used to digitize source signals.

char szUnits[32]; // Specifies the recording units of measurement.

} ns_SEGMENTINFO;

 29

ns_GetSegmentSourceInfo

Usage

ns_RESULT ns_GetSegmentSourceInfo (uint32 hFile, uint32 dwEntityID,

uint32 dwSourceID,

ns_SEGSOURCEINFO *pSourceInfo,

uint32 dwSourceInfoSize);

Description

Retrieves information about the source entity, dwSourceID, for the Segment Entity identified
by dwEntityID, from the file referenced by the handle hFile. The information is written to
the ns_SEGSOURCEINFO structure pointed to by pSourceInfo. The size in bytes allocated
for ns_SEGSOURCEINFO is specified by dwSourceInfoSize.

Parameters

hFile Handle to an open file.
dwEntityID Identification number of the Segment Entity.
dwSourceID Identification number of the Segment Entity source.
pSourceInfo Pointer to a ns_SEGSOURCEINFO structure that receives

information about the source.
dwSourceInfoSize Allocated size in bytes for ns_SEGSOURCEINFO structure.

Return Values

This function returns ns_OK if the information is successfully retrieved. Otherwise one of
the following error codes is generated:

ns_BADFILE Invalid file handle passed to function
ns_BADENTITY Invalid or inappropriate entity identifier specified
ns_BADSOURCE Invalid source identifier specified
ns_FILEERROR File access or read error
ns_LIBERROR Library Error

Remarks

The value of dwSourceID is an integer index value ranging from 0 to dwSourceCount -1
(which is returned by the function ns_GetSegmentInfo).

 30

ns_SEGSOURCEINFO

typedef struct {

double dMinVal; // Minimum possible value of the input signal.

double dMaxVal; // Maximum possible value of the input signal.

double dResolution; // Minimum input step size that can be resolved.
// (E.g. for a +/- 1 Volt 16-bit ADC this value is .0000305).

double dSubSampleShift; // Time difference (in sec) between the nominal timestamp
// and the actual sampling time of the source probe. This
// value will be zero when all source probes are sampled
// simultaneously.

double dLocationX; // X coordinate of source in meters.

double dLocationY; // Y coordinate of source in meters.

double dLocationZ; // Z coordinate of source in meters.

double dLocationUser; // Additional manufacturer-specific position information
// (e.g. electrode number in a tetrode).

double dHighFreqCorner; // High frequency cutoff in Hz of the source signal filtering.

uint32 dwHighFreqOrder; // Order of the filter used for high frequency cutoff.

char szHighFilterType[16]; // Type of filter used for high frequency cutoff (text format).

double dLowFreqCorner; // Low frequency cutoff in Hz of the source signal filtering.

uint32 dwLowFreqOrder; // Order of the filter used for low frequency cutoff.

char szLowFilterType[16]; // Type of filter used for low frequency cutoff (text format)..

char szProbeInfo[128]; // Additional text information about the signal source.

} ns_SEGSOURCEINFO;

 31

ns_GetSegmentData

Usage

ns_RESULT ns_GetSegmentData (uint32 hFile, uint32 dwEntityID, int32 nIndex,
double *pdTimeStamp, double *pData,
uint32 dwDataBufferSize, uint32 *pdwSampleCount,
uint32 *pdwUnitID);

Description

Returns the Segment data values in entry nIndex of the entity dwEntityID from the file
referenced by hFile. The data values are returned in the buffer pointed to by pData. The
size in bytes allocated to the data buffer is specified by dwDataBufferSize. The timestamp of
the entry is returned at the address pointed to by pdTimeStamp. The actual number of
samples written to the data buffer is returned at pdwSampleCount.

The data buffer should be accessed as a 2-dimensional array for samples and sources.

In C, the array would be declared as double data[maxsamplecount][sourcecount];
and the values would be referenced by data[sample][source]

With pointers, the reference would be *(pData+(sample*sourcecount)+source)

Parameters

hFile Handle to an open file.
dwEntityID Identification number of the entity in the data file.
nIndex The index number of the requested Segment data item.
pdTimeStamp Pointer to the time stamp of the requested Segment data item.
pData Pointer to the buffer that is to receive the requested data.
dwDataBufferSize Size in bytes allocated to the data buffer pointed to by pData.
pdwSampleCount Pointer to the number of samples returned in the data buffer.
pdwUnitID Pointer to the unit classification code for the Segment Entity.

Remarks

The pdwUnitID field is a bit-field supporting multiple classification codes. A zero unit ID is
unclassified, bit 0 is set if the segment is noise or an artifact, bit 1 indicates unit 1 is present,
bit 2 indicates that unit 2 is present, etc.

Return Values

This function returns ns_OK if the information is successfully retrieved. Otherwise one of
the following error codes is generated:

ns_BADFILE Invalid file handle passed to function
ns_BADENTITY Invalid or inappropriate entity identifier specified
ns_BADINDEX Invalid entity index specified
ns_FILEERROR File access or read error
ns_LIBERROR Library Error

 32

Accessing Neural Event Entities
The following functions retrieve information and data for Neural Entities.

ns_GetNeuralInfo

Usage

ns_RESULT ns_GetNeuralInfo (uint32 hFile, uint32 dwEntityID,

ns_NEURALINFO *pNeuralInfo,

uint32 dwNeuralInfoSize);

Description

Retrieves information on Neural Event entity dwEntityID from the file referenced by hFile.
The information is returned in the structure ns_NEURALINFO at the address pnNeuralInfo
The memory allocated in bytes for the structure ns_NEURALINFO is given by
dwNeuralInfoSize.

Parameters

hFile Handle to an open file.
dwEntityID Identification number of the entity in the data file.
pNeuralInfo Pointer to the ns_NEURALINFO structure to receive the Neural

Event information.
dwNeuralInfoSize Allocated size in bytes for ns_NEURALINFO structure.

Return Values

This function returns ns_OK if the information is successfully retrieved. Otherwise one of
the following error codes is generated:

ns_BADFILE Invalid file handle passed to function
ns_BADENTITY Invalid or inappropriate entity identifier specified
ns_FILEERROR File access or read error
ns_LIBERROR Library Error

 33

ns_NEURALINFO

typedef struct {

uint32 dwSourceEntityID; // Optional ID number of a source entity. If the Neural Event is
// derived from other entity sources, such as Segment Entities,
// this value links the Neural Event back to the source.

uint32 dwSourceUnitID; // Optional sorted unit ID number used in the source Entity.

char szProbeInfo[128]; // Text information about the source probe or the label of a
// source Segment Entity.

} ns_NEURALINFO;

 34

ns_GetNeuralData

Usage

ns_RESULT ns_GetNeuralData(uint32 hFile, uint32 dwEntityID, uint32 dwStartIndex,

uint32 dwIndexCount, double *pData)

Description

Returns an array of timestamps for the neural events of the entity specified by dwEntityID
and referenced by the file handle hFile. The index of the first timestamp is nStartIndex and
the requested number of timestamps is given by dwIndexCount. The timestamps are returned
in the buffer pointed to by pData

Parameters

hFile Handle to an open file.
dwEntityID Identification number of the entity in the data file.
dwStartIndex First index number of the requested Neural Events timestamp.
dwIndexCount Number of timestamps to retrieve.
pData Pointer to an array of double precision timestamps. The user

application must allocate sufficient space (
dwIndexCount*sizeof(double) bytes) to hold the requested data.

Return Values

This function returns ns_OK if the information is successfully retrieved. Otherwise one of
the following error codes is generated:

ns_BADFILE Invalid file handle passed to function
ns_BADENTITY Invalid or inappropriate entity identifier specified
ns_BADINDEX Invalid entity index specified
ns_FILEERROR File access or read error
ns_LIBERROR Library Error

 35

Searching Entity Indexes
All of the data access functions defined in this API enumerate their data entries by index. The
functions described in this section can be used to link these indexes with time.

ns_GetIndexByTime

Usage

ns_RESULT ns_GetIndexByTime(uint32 hFile, uint32 dwEntityID, double dTime,
int32 nFlag, uint32 *pdwIndex)

Description

Searches in the file referenced by hFile for the data item identified by the index dwEntityID.
The flag specifies whether to locate the data item that starts before or after the time dTime.
The index of the requested data item is returned at pdwIndex.

Parameters

hFile Handle to an open file
dwEntityID Identification number of the entity in the data file.
dTime Time of the data to search for
nFlag Flag specifying whether the index to be retrieved belongs to the data item

occurring before or after the specified time dTime. The flags are defined:
#define ns_BEFORE -1 // return the data entry occuring before

// and inclusive of the time dTime.
#define ns_CLOSEST 0 // return the data entry occuring at or closest

// to the time dTime
#define ns_AFTER +1 // return the data entry occuring after

// and inclusive of the time dTime.
pdwIndex Pointer to variable to receive the entry index.

Return Values

This function returns ns_OK if the information is successfully retrieved. Otherwise one of
the following error codes is generated:

ns_BADFILE Invalid file handle passed to function
ns_BADENTITY Invalid or inappropriate entity identifier specified
ns_FILEERROR File access or read error
ns_BADINDEX Unable to find an valid index given the search parameters
ns_LIBERROR Library Error

 36

ns_GetTimeByIndex

Usage

ns_RESULT ns_GetTimeByIndex(uint32 hFile, uint32 dwEntityID, uint32 dwIndex,

double *pdTime)

Description

Retrieves the timestamp for the entity identified by dwEntityID and numbered dwIndex, from
the data file referenced by hFile. The timestamp is returned at pdTime.

Parameters

hFile Handle to an open file
dwEntityID Identification number of the entity in the data file.
dwIndex Index of the requested data.
pdTime Pointer to the variable to receive the timestamp.

Return Values

This function returns ns_OK if the information is successfully retrieved. Otherwise one of
the following error codes is generated:

ns_BADFILE Invalid file handle passed to function
ns_BADENTITY Invalid or inappropriate entity identifier specified
ns_BADINDEX Invalid entity index specified
ns_FILEERROR File access or read error
ns_LIBERROR Library Error

 37

Extended Error Message Handler
The following function reports an extended text message about the last ns_RESULT error
returned from a function call.

ns_GetLastErrorMsg

Usage

ns_RESULT ns_GetLastErrorMsg(char *pszMsgBuffer, uint32 dwMsgBufferSize)

Description

Returns the last error message in formatted text form to the buffer pointed to by
pszMsgBuffer. This function should be called immediately following a function whose
return value indicates that such a call will return useful data. Otherwise, the error set by
the failed function may be wiped out by more recent function calls. dwMsgBufferSize
specifies the size in bytes allocated to receive the text message.

 The maximum size of the error message text is 256 characters.

Parameters

pszMsgBuffer Pointer to buffer to receive the text error message.
dwMsgBufferSize Allocated size in bytes for the error message buffer.

Return Values

This function returns ns_OK if the information is successfully retrieved. Otherwise one of
the following error codes is generated:

 ns_LIBERROR Library error

 38

Revision History

Revision 0.9a –Beta draft produced after the first working group meeting (Jan 16-18, 2002). This meeting
included Tim Bergel (Cambridge Electronic Design Ltd.), Charlotte Gruner (Pronghorn Engineering), Shane
Guillory (Bionic Technologies, LLC), Hans Löffler (Multi Channel Systems MCS GmbH), Thane Plummer
(Neuralynx Inc.), Tony Reina (The Neurosciences Institute), Casey Stengel (Neuralynx Inc.), Angela Wang (Bionic
Technologies, LLC), Harvey Wiggins (Plexon Inc.), and Willard Wilson (Tucker-Davis Technologies). Draft
compiled by Shane Guillory and Angela Wang and published for public review and comment on March 27, 2002.

Revision 0.9b –Revisions made after first public review. Changes compiled by Shane Guillory and Angela
Wang. Clarified the role of Neural Event Entities as abstractions of the neural timing information from Event and
Segment entities. Added GetLibraryInfo function and supporting data structure and eliminated the DLL version
method of getting library information. Added sections to discuss multi-instance, multi-threaded issues and provided
method for libraries to report multithread support in the Get Library Info function. Changed analog data gap
reporting method and clarified the descriptions. Added Unit Identification code field to the Segment Entity data
functions. Changed error codes to negative, sequential values. Added minor language and grammatical corrections.
July 19, 2002.

Revision 0.9c
1. P8. line 26. In order to emphasize that multiple data files can be opened at once, the relevant words are put

in bold font. A minimum of 64 simultaneously open data files is required, system resources allowing.
2. A function to allow for extended error information reporting has been added.
3. GetLastErrorMsg(char *pszMsgBuffer, uint32 dwMsgBufferSize).

4) Add parameter to indicate the size in bytes of the allocated buffer to receive the data in the
following functions:

4. ns_GetEventData (uint32 hFile, uint32 dwEntityID, uint32 dwIndex,
5. double *pdTimeStamp, void *pData,
6. uint32 dwDataSize, uint32 *pdwDataRetSize);
7. ns_GetSegmentData (uint32 hFile, uint32 dwEntityID, int32 nIndex,
8. double *pdTimeStamp, double *pData,
9. uint32 dwDataBufferSize, uint32 *pdwSampleCount,
10. uint32 *pdwUnitID)
11. p 14, ln 26. Invalid file handles are defined to be NULL..
12. p 10. NULL function parameters that point to data, mean that no data for that parameter is to be returned
13. p 13. Two parameters added to ns_LIBRARYINFO to indicate the version number of the Neuroshare API

Specification that the library complies with. Jan-28-2003 AW

Revision 1.0

1. Removed Important message at bottom of title page.
2. p2. Revisions paragraph shortened.
3. p8. Added paragraph about multiple open data files. Included in pseudo-code another loop for opening

multiple data files.
4. p12. Recommend using local directory and system registry to search for installed Neuroshare libraries.
5. Added ns_LIBERROR as possible error return to all functions.
6. p 26. Clarified that pdwContCount in ns_GetAnalogData means the number of continuous Analog items,

not the index number of the last continuous item.
7. Removed section Win32 DLL Structure. Feb-18-2003 AW

