
1

Neuroshare API Specification
Rev0.9a

Application Programming Interface for
Accessing Neurophysiology Experiment Data Files

March 2002

IMPORTANT: This specification is presently in development and not ready for general release.
Revision suggestions are welcome at http://www.neuroshare.org.

2

AFFILIATIONS
This standard is being developed and maintained through the Neuroshare Project. The purpose
of this project is to create open, standardized methods for accessing neurophysiological
experiment data from a variety of different data formats, as well as open-source software tools
based on these methods. All standards and software resulting from the Neuroshare Project are
distributed and revised through the http://www.neuroshare.org web site. Additional contact
information and project history can also be accessed through this site.

DISCLAIMER
This specification document is provided “as is” with no warranties whatsoever, including any
warranty of merchantability, noninfringement, fitness for any particular purpose, or any warranty
otherwise arising out of any proposal, specification or sample. The Neuroshare project and the
working group disclaim all liability relating to the use of information in this specification.

TRADEMARKS
Windows and Microsoft are registered trademarks of the Microsoft Corporation. All other
product names are trademarks or servicemarks of their respective owners.

REVISIONS
This is the first beta release of the Neuroshare API Specification for public review. This
specification is currently in development and not for general usage.

COPYRIGHT AND DISTRIBUTION
This specification document is Copyrighted © 2002 by the maintainers of neuroshare.org and the
Neuroshare Project. This document may be freely distributed in its unmodified form. Modified
versions of this document must be clearly labeled as such and include descriptions of deviations
from the original text. Developers wishing to use this standard are referred to the official
Neuroshare Project web site (http://www.neuroshare.org) for the latest documents.

3

Table of Contents
Intended Scope and Usage.. 4
Representation of Data Types .. 5
Representation of Time... 5
Conventions used in this Library Specification.. 6
Structure of File Data ... 6
Summary of Library Functions ... 8
Primitive Data Types .. 9
Library Function Returns .. 9
Managing Neural Data Files... 10

ns_OpenFile .. 10
ns_GetFileInfo... 11
ns_FILEINFO.. 12
ns_CloseFile.. 13

General Entity Information.. 14
ns_GetEntityInfo.. 14
ns_ENTITYINFO... 15

Accessing Event Entities ... 16
ns_GetEventInfo .. 16
ns_EVENTINFO.. 17
ns_GetEventData .. 18

Accessing Analog Entities... 19
ns_GetAnalogInfo.. 19
ns_ANALOGINFO .. 20
ns_GetAnalogData .. 21

Accessing Segment Entities .. 22
ns_GetSegmentInfo.. 22
ns_SEGMENTINFO.. 23
ns_GetSegmentSourceInfo .. 24
ns_SOURCEINFO... 25
ns_GetSegmentData .. 26

Accessing Neural Event Entities .. 27
ns_GetNeuralEventInfo... 27
ns_NEURALINFO... 28
ns_GetNeuralData .. 29

Searching Entity Indexes .. 30
ns_GetIndexByTime .. 30
ns_GetTimeByIndex .. 31

Win32 DLL Structure... 32
Revision History .. 35

4

Intended Scope and Usage
The purpose of this Application Programming Interface (API) standard is to define a common
interface for accessing neurophysiology experiment data files. This common interface allows
neurophysiology applications to access data in a variety of proprietary file formats through
vendor-specific libraries. Such applications can include extracellular spike sorting programs,
data visualization utilities, and high-level neuroscience data analysis programs.

Neurophysiology User Application

Vendor X
Library

Vendor Y
Library

Vendor Z
Library

Vendor X
Data Files

Vendor Y
Data Files

Vendor Z
Data Files

Future Library for
Intermediate Format

Intermediate Format
Data Files

As of this revision, the API only defines functions necessary to extract information from data
files. At a future time, extensions may be provided to allow user applications to write/modify
data files. It is also possible that a simple intermediate data file format, based on the data
structures in this API, may be created for storing processed experiment information and sorted
spike timing information generated from other spike classification programs.

When complete, this document will contain all of the information required to develop both
libraries and user applications. Additional utilities and example source code for supporting the
development of libraries and applications will be made available on the neuroshare.org web site
as they are developed.

As of this revision, the specification is oriented towards 32-bit Microsoft Windows applications
through the of Dynamic Link Libraries (DLLs). Whenever possible, portable coding
conventions will be used to support future ports to other 32-bit and 64-bit operating systems.

5

Representation of Data Types
Although there are many types of data sources possible in neurophysiological experiments, this
API definition abstracts data into four basic catagories or “Entity Types”. These are:

Event Entities – Discrete events that consist of small time-stamped text or binary data
packets. These are used to represent data such as trial markers, experimental events,
digital input values, and embedded user comments.

Analog Entities – Continuous, sampled data that represent digitized analog signals such
as position, force, and other experiment signals, as well as electrode signals such as EKG,
EEG and extracellular microelectrode recordings.

Segment Entities – Short, time-stamped segments of digitized analog signals in which
the segments are separated by variable amounts of time. Segment Entities can contain
data from more than one source. They are intended to represent discontinuous analog
signals such as extracellular spike waveforms from electrodes or groups of electrodes.

Neural Event Entities – Neural Events are a special case of Event Entities that contain
only timestamps for representing neuron firing times. This type is included in addition to
Event Entities due to the special significance of neural events to neurophysiology
experiments.

The API definition also provides functions for querying information about data files and the
entities contained in the data file. This information includes labels, metric units, timings, etc.

Data File or File Group
Trial Start/Stop Markers
Stimulus Information
Reward Information
Position Information
Force Information
EEG Data
EMG Data
Extracellular Spikes
Embedded Comments

File Information

Neuroshare
Compliant
API Library

for the
Data Format

Analog Entities

Segment Entities

Event Entities

Neural Event Entities

Representation of Time
The API definition assumes that each data file consists of a single span of time. The timings of
all data presented by the library to user applications are referenced to the beginning of this span.

Some data formats organize data according to trials in which time is recorded within each trial,
but not between trials. Libraries that access these types of files must combine these trials into a
single time span and present an event entity which marks the beginning of each trial. Although
this is somewhat awkward, this abstraction makes the organization of trial-based files equivalent
to single time span files that use event markers to delineate trials.

6

Conventions used in this Library Specification
The function definitions and data structures presented in this document will be specified
according to the C language syntax and convention. However, the actual language used to write
the libraries is irrelevant as libraries use a common linkage format for exported functions.

All Neuroshare-specific functions, constants and data types will include a “ns_” prefix.

The API functions in this specification utilize several text fields for descriptions, such as labels,
user comments, electrode locations, etc. The use of human readable text is encouraged wherever
possible in these fields along with simplified data representations. For example, if a vendor uses
a proprietary data packet format for position information in experiments, the vendor is
encouraged to include library code that presents this data as analog entities with labels such as
“POS X” and “POS Y”. In this initial version of the specification, all text information will be
reported in 8-bit ASCII format.

All analog values in this library, including time, shall use a 64-bit double-precision floating point
representation. All analog entities also include a text field for reporting measurement units such
as “meters”, “MPa”, “kg”. The use of metric units is strongly encouraged. Time is always
reported in seconds.

Structure of File Data
Data entities in a data file are enumerated by the library from 0 to (total number of entities –1).
Each entity is one of the four types discussed in the Representation of Dates Types section above
and there are no requirements for ordering entities by type.

Each entity contains one or more indexed data entries that are ordered by increasing time. The
API provides functions for querying the characteristics of the file, the number of entities, and the
characteristics of each entity, including the number of indexes for each entity.

Entity 1

Entity (N-1)

Index 0 Index 1

Index 0

+

+

+
Data File

with
N Entities

Index 1 +

Entity 0 Index 0 Index 1 ++

7

The structure of the indexed data entries for each entity depends on the entity type:

Each index of an event entity refers to a timestamp and data combination. The number of
indexes is equal to the number of event entries for that event entity in the data file.

Each index of an analog entity refers to a specific digitized sample. Each analog entity
contains samples from a single channel and the number of indexes is equal to the number
of samples present for that channel.

Each index of a segment entity refers to a short, time-stamped segment of analog data
from one or more sources. The number of indexes is equal to the number of entries for
that segment entity in the file.

Each index of a neural event entity refers to a timestamp for each neural event. Each
neural event entity contains event times for a single neural source. The number of
indexes is equal to the number of entries for that neural event entity.

The API provides unified functions for searching for index ranges of an entity of any type by
time range, and functions are also provided to report the timing of an entity index.

The data abstraction listed above is somewhat demanding on the libraries as it requires them to
organize, temporally sort and report data in the file according to type. This structure was chosen
to simplify the data representation for user applications that must analyze the data in these files.
The libraries were selected as the best place for this re-organization of data to occur as most
libraries have access to special knowledge about the particular file formats that they must handle.
It would be highly inefficient and complicated for user applications to import data from serial
packet streams into catalogs of available data with time and index search capabilities.

The prototypical loading sequence for the library and data files can be summarized by the
following pseudo-code:

Load Needed Library;

Open Neural Data File;

Query Number of Entities;

For Each Entity,
Get Entity Type;
Get Type Specific Entity Information;

Repeat Main Operational Loop,
Determine Entities of Interest;
Search for Needed Indexes of Relevant Entities;
Retrieve the Data for the Relevant Entities;
Do Application-Specific Processing and Display;

While Still Interested;

Close Neural Data File;

Unload Library;

Although this pseudo-code sequence outlines the typical operations for accessing a single file,
the API functions are specified to allow multiple files or file groups to be opened simultaneously.
Libraries must properly manage memory to support this functionality.

8

Summary of Library Functions
The API library functions are organized in this document according to the following categories:

Managing Neural Data Files

ns_OpenFile – opens a neural data file

ns_GetFileInfo – retrieves file information and entity counts

ns_CloseFile– closes a neural data file

General Entity Information

ns_GetEntityInfo– retrieves general entity information and type

Accessing Event Entities

ns_GetEventInfo– retrieves information specific to event entities

ns_GetEventData – retrieves event data by index

Accessing Analog Entities

ns_GetAnalogInfo – retrieves information specific to analog entities

ns_GetAnalogData – retrieves analog data by index

Accessing Segment Entities

ns_GetSegmentInfo – retrieves information specific to segment entities

ns_GetSegmentSourceInfo – retrieves information about the sources that generated
the segment data

ns_GetSegmentData – retrieves segment data by index

Accessing Neural Event Entities

ns_GetNeuralInfo – retrieves information for neural event entities

ns_GetNeuralData – retrieves neural event data by index

Searching Entity Indexes

ns_GetIndexByTime – retrieves an entity index by time

ns_GetTimeByIndex – retrieves time range from entity indexes

All Neuroshare-compliant libraries must export all of the above functions along with platform
specific functions for opening, closing and dynamically linking libraries (e.g., the DllMain()
function in Win32 DLLs).

The following sections that provide the details of these functions also include data structure
definitions used by its functions.

9

Primitive Data Types
To avoid ambiguity across platforms, the following primitive data types are explicitly defined:

char 8-bit character value normally reserved for ASCII strings

int8 8-bit (1 byte) signed integers

uint8 8-bit (1 byte) unsigned integers

int16 16-bit (2 byte) signed integers

uint16 16-bit (2 byte) unsigned integers

int32 32-bit (4 byte) signed integers

uint32 32-bit (4 byte) unsigned integers

double 64-bit, double precision floating point value

All of the data structures and functions detailed in this specification will use the above data
types. In this API specification, data types in functions and structures are rigidly defined so that
endianess issues should not be a problem in properly written code. Developers are discouraged
from making assumptions about byte ordering in the above primitive data types.

Library Function Returns
All of the Neuroshare API functions return a 32-bit unsigned integer declared as type
ns_RETURN. This value is always zero (ns_OK) if the function succeeds. The complete
enumeration of the return values are listed below:

Return Code Value Description

ns_OK 0x00 Function Successful

ns_LIBERROR 0x01 Linked Library Error

ns_TYPEERROR 0x02 Library unable to open file type

ns_FILEERROR 0x04 File access or read Error

ns_BADFILE 0x10 Invalid file handle passed to function

ns_BADENTITY 0x20 Invalid or inappropriate entity identifier specified

ns_BADSOURCE 0x40 Invalid source identifier specified

ns_BADINDEX 0x80 Invalid entity index specified

10

Managing Neural Data Files
The following functions open and close neurophysiological data files and provide general file

information.

ns_OpenFile

Usage

ns_RESULT ns_OpenFile (const char *pszFilename, uint32 *hFile)

Description

Opens the file specified by pszFilename and returns a file handle, hFile, that can be used to
access the opened file.

Parameters

pszFilename Pointer to a null-terminated string that specifies the name of the file to open.

hFile Handle to the opened file. This value is returned by the function and is used
for subsequent file operations.

Return Values

This function returns ns_OK if the file is successfully opened. Otherwise one of the
following error codes is generated:

ns_TYPEERROR Library unable to open file type
ns_FILEERROR File access or read error

Remarks

All files are opened for read-only, as no writing capabilities have been implemented. If the
command succeeds in opening the file, the application should call ns_CloseFile for each open
file before terminating.

11

ns_GetFileInfo

Usage

ns_RESULT ns_GetFileInfo (uint32 hFile, ns_FILEINFO *pFileInfo,
uint32 dwFileInfoSize);

Description

Provides general information about the data file referenced by hFile. This information is
returned in the structure pointed to by pFileInfo. The size of the file information structure is
given by dwFileInfoSize.

Parameters

hFile Handle to an open file.

pFileInfo Pointer to the ns_FILEINFO structure that receives the file information.

dwFileInfoSize Size of the ns_FILEINFO structure in bytes.

Return Values

This function returns ns_OK if the file information is successfully retrieved. Otherwise one
of the following error codes is generated:

ns_FILEERROR File access or read error
ns_BADFILE Invalid file handle passed to function

12

ns_FILEINFO

typedef struct {

char szFileType[32]; // Human readable manufacturer’s file type descriptor.

uint32 dwEntityCount; // Number of entities in the data file. This number is used
// to enumerate all the entities in the data file from 0 to
// (dwEntityCount –1) and to identify each //entity in
// function calls (dwEntityID).

double dwTimeStampResolution // Minimum timestamp resolution.

double dTimeRange; // Time range covered by the data file in seconds.

char szAppName[64]; // Information about the application that created the file.

uint16 wTime_Year; // Year.

uint16 wTime_Month; // Month (0-11; January = 0).

uint16 wTime_DayofWeek; // Day of the week (0-6; Sunday = 0).

uint16 wTime_Day; // Day of the month (1-31).

uint16 wTime_Hour; // Hour since midnight (0-23).

uint16 wTime_Min; // Minute after the hour (0-59).

uint16 wTime_Sec; // Seconds after the minute (0-59).

uint16 wTime_MilliSec; // Milliseconds after the second (0-1000).

char szFileComment[256]; // Comments embedded in the source file.

} ns_FILEINFO;

Remarks

The time variables in the ns_FILEINO structure refer to the beginning of the time span to
which the data is referenced.

13

ns_CloseFile

Usage

ns_RESULT ns_CloseFile (uint32 hFile);

Description

Closes a previously opened file specified by the file handle hFile.

Parameters

hFile Handle to an open file.

Return Values

This function always returns ns_OK.

14

General Entity Information
The functions described below provide general information about the data entities in the file.
The total number of data entities available can be obtained from the ns_FILEINFO structure.
The entities are enumerated from 0 to (the number of entities - 1). All of the subsequent
information and data access functions require an entity to be specified in the dwEntitityID field.

ns_GetEntityInfo

Usage

ns_RESULT ns_GetEntityInfo (uint32 hFile, uint32 dwEntityID,
ns_ENTITYINFO *pEntityInfo, uint32 dwEntityInfoSize);

Description

Retrieves general information about the entity, dwEntityID, from the file referenced by the
file handle hFile. The information is passed in the structure pointed to by pEntityInfo with a
size of dwEntityInfoSize bytes.

Parameters

hFile Handle to an open file.

dwEntityID Identification number of the entity in the data file. The total number of
entities in the data file is provided by the member dwEntityCount in the
ns_FILEINFO structure.

pEntityInfo Pointer to a ns_ENTITYINFO structure to receive entity information.

dwEntityInfoSize Size of ns_ENTITYINFO structure in bytes.

Return Values

This function returns ns_OK if the information is successfully retrieved. Otherwise one of
the following error codes is generated:

ns_BADFILE Invalid file handle passed to function
ns_BADENTITY Invalid or inappropriate entity identifier specified
ns_FILEERROR File access or read error

15

ns_ENTITYINFO

typedef struct {

char szEntityLabel[32]; // Specifies the label or name of the entity.

uint32 dwEntityType; // Flag specifying the type of entity data recorded on this
// channel. It can be one of the following:
// # define ns_ENTITY_EVENT 1
// # define ns_ENTITY_ANALOG 2
// # define ns_ENTITY_SEGMENT 3
// # define ns_ENTITY_NEURALEVENT 4

int32 dwItemCount; // Number of data items for the specified entity in the file.

} ns_ENTITYINFO;

16

Accessing Event Entities
The following functions retrieve information and data for Event Entities.

ns_GetEventInfo

Usage

ns_RESULT ns_GetEventInfo (uint32 hFile, uint32 dwEntityID,
ns_EVENTINFO *pEventInfo, uint32 dwEventInfoSize);

Description

Retrieves information from the file referenced by hFile about the Event Entity, dwEntityID,
in the structure pointed to by pEventsInfo. The structure has a size of dwEventInfoSize bytes.

Parameters

hFile Handle to an open file.

dwEntityID Identification number of the entity in the data file.
pEventsInfo Pointer to a ns_EVENTINFO structure to receive the Event Entity

information.

dwEventInfoSize Size of the ns_EVENTINFO structure in bytes.

Return Values

This function returns ns_OK if the information is successfully retrieved. Otherwise one of
the following error codes is generated:

ns_BADFILE Invalid file handle passed to function
ns_BADENTITY Invalid or inappropriate entity identifier specified
ns_FILEERROR File access or read error

17

ns_EVENTINFO

typedef struct {

uint32 dwEventType; // A type code describing the type of event data associated with
// each indexed entry. The following information types are
// allowed:
// #define ns_EVENT_TEXT 0 //text string
// #define ns_EVENT_CSV 1 //comma separated values
// #define ns_EVENT_BYTE 2 // 8-bit binary value
// #define ns_EVENT_WORD 3 //16-bit unsigned integer
// #define ns_EVENT_DWORD 4 //32-bit unsigned

integer

uint32 dwMinDataLength; // Minimum number of bytes that can be returned for an Event.

uint32 dwMaxDataLength; // Maximum number of bytes that can be returned for an Event.

char szCSVDesc [128]; // Provides descriptions of the data fields for CSV Event Entities.

} ns_EVENTINFO;

18

ns_GetEventData

Usage

ns_RESULT ns_GetEventData (uint32 hFile, uint32 dwEntityID, uint32 nIndex,
double *pdTimeStamp, void *pData, uint32 *pdwDataSize);

Description

Returns the data values from the file referenced by hFile and the Event Entity dwEntityID.
The Event data entry specified by nIndex is written to pData and the timestamp of the entry
is returned to pdTimeStamp. Upon return of the function, the value at pdwDataSize contains
the number of bytes actually written to pData.

Parameters

hFile Handle to an open file.

dwEntityID Identification number of the entity in the data file.
nIndex The index number of the requested Event data item.

pdTimeStamp Pointer to a variable that receives the timestamp of the Event data item.

pData Pointer to a buffer that receives the data for the Event entry. The format
of Event data is specified by the member dwEventType in
ns_EVENTINFO.

pdwDataSize Pointer to a variable that receives the actual number of bytes of data
retrieved in the data buffer.

Return Values

This function returns ns_OK if the information is successfully retrieved. Otherwise one of
the following error codes is generated:

ns_BADFILE Invalid file handle passed to function
ns_BADENTITY Invalid or inappropriate entity identifier specified
ns_BADINDEX Invalid entity index specified
ns_FILEERROR File access or read error

19

Accessing Analog Entities
The following functions retrieve information and data for Analog Entities.

ns_GetAnalogInfo

Usage

ns_RESULT ns_GetAnalogInfo (uint32 hFile, uint32 dwEntityID,
ns_ANALOGINFO *pAnalogInfo,
uint32 dwAnalogInfoSize);

Description

Returns information about the Analog Entity associated with dwEntityID and the file hFile.
The information is stored in a ns_ANALOGINFO structure, addressed by the pointer
pAnalogSourceInfo. The size of ns_ANALOGINFO is specified by dwAnalogInfoSize.

Parameters

hFile Handle to an open file.
dwEntityID Identification number of the entity in the data file.
pAnalogSourceInfo Pointer to a ns_ANALOGINFO structure.

dwAnalogInfoSize Size in bytes of ns_ANALOGINFO structure.

Return Values

This function returns ns_OK if the information is successfully retrieved. Otherwise one of
the following error codes is generated:

ns_BADFILE Invalid file handle passed to function
ns_BADENTITY Invalid or inappropriate entity identifier specified
ns_FILEERROR File access or read error

20

ns_ANALOGINFO

typedef struct{

double dSampleRate; // The sampling rate in Hz used to digitize the analog values.

double dMinVal; // Minimum possible value of the input signal.

double dMaxVal; // Maximum possible value of the input signal.

char szUnits[32]; // Specifies the recording units of measurement.

double dResolution; // Minimum input step size that can be resolved.
// (E.g. for a +/- 1 Volt 16-bit ADC this value is .0000305).

double dLocationX; // X coordinate of source in meters.

double dLocationY; // Y coordinate of source in meters.

double dLocationZ; // Z coordinate of source in meters.

double dLocationUser; // Additional manufacturer-specific position information
// (e.g. electrode number in a tetrode).

double dHighFreqCorner; // High frequency cutoff in Hz of the source signal filtering.

uint32 dwHighFreqOrder; // Order of the filter used for high frequency cutoff.

char szHighFilterType[16]; // Type of filter used for high frequency cutoff (text format).

double dLowFreqCorner; // Low frequency cutoff in Hz of the source signal filtering.

uint32 dwLowFreqOrder; // Order of the filter used for low frequency cutoff.

char szLowFilterType[16]; // Type of filter used for low frequency cutoff (text format)..

char szProbeInfo[128]; // Additional text information about the signal source.

} ns_ANALOGINFO;

21

ns_GetAnalogData

Usage

ns_RESULT ns_GetAnalogData (uint32 hFile, uint32 dwEntityID, uint32 dwStartIndex,
uint32 dwIndexCount, double *pData);

Description

Returns the data values associated with the Analog Entity indexed dwEntityID in the file
referenced by hFile. The index of the first data value is nStartIndex and the requested
number of data values is given by dwIndexCount. The requested data values are returned in
the buffer pointed to by pData.

If the index range specified by dwStartIndex and dwIndexCount contains invalid indexes, the
function will return ns_BADINDEX.

Parameters

hFile Handle to an open file.

dwEntityID Identification number of the entity in the data file.
dwStartIndex Starting index number of the analog data item.

dwIndexCount Number of analog values to retrieve.

pData Pointer to an array of double precision values to receive the analog data.
The user application must allocate sufficient space to hold dwIndexCount
double values or dwIndexCount*sizeof(double) bytes.

Return Values

This function returns ns_OK if the information is successfully retrieved. Otherwise one of
the following error codes is generated:

ns_BADFILE Invalid file handle passed to function
ns_BADENTITY Invalid or inappropriate entity identifier specified
ns_BADINDEX Invalid entity index or range specified
ns_FILEERROR File access or read error

22

Accessing Segment Entities
The following functions retrieve information and data for Segment Entities.

ns_GetSegmentInfo

Usage

ns_RESULT ns_GetSegmentInfo (uint32 hFile, uint32 dwEntityID,
ns_SEGMENTINFO *pdwSegmentInfo,
uint32 dwSegmentInfoSize);

Description

Retrieves information on the Segment Entity, dwEntityID, in the file referenced by the handle
hFile. The information is written to the ns_SEGMENTINFO structure at pdwSegmentInfo.
The size of the ns_SEGMENTINFO structure is specified by dwSegmentInfoSize.

Parameters

hFile Handle to an open file.
dwEntityID Identification number of the entity in the data file.
pdwSegmentInfo Pointer to the structure ns_SEGMENTINFO that receives general

segment information for the Segment Entity.

dwSegmentInfoSize Size of the structure ns_SEGMENTINFO in bytes.

Return Values

This function returns ns_OK if the information is successfully retrieved. Otherwise one of
the following error codes is generated:

ns_BADFILE Invalid file handle passed to function
ns_BADENTITY Invalid or inappropriate entity identifier specified
ns_FILEERROR File access or read error

23

ns_SEGMENTINFO

typedef struct {

uint32 dwSourceCount; // Number of sources contributing to the Segment Entity data.
// For example, with tetrodes, this number would be 4.

uint32 dwMinSampleCount; // Minimum number of samples in each Segment data item.

uint32 dwMaxSampleCount; // Maximum number of samples in each Segment data item.

double dSampleRate; // The sampling rate in Hz used to digitize source signals.

char szUnits[32]; // Specifies the recording units of measurement.

} ns_SEGMENTINFO;

24

ns_GetSegmentSourceInfo

Usage

ns_RESULT ns_GetSegmentSourceInfo (uint32 hFile, uint32 dwEntityID,
uint32 dwSourceID,
ns_SOURCEINFO *pSourceInfo,
uint32 dwSourceInfoSize);

Description

Retrieves information about the source entity, dwSourceID, for the Segment Entity identified
by dwEntityID, from the file referenced by the handle hFile. The information is written to
the ns_SOURCEINFO structure pointed to by pSourceInfo. The size of the structure is given
by dwSourceInfoSize in bytes (sizeof(ns_SOURCEINFO)).

Parameters

hFile Handle to an open file.

dwEntityID Identification number of the entity in the data file.
dwSourceID Identification number of the Segment Entity source.

pSourceInfo Pointer to a ns_SOURCEINFO structure that receives Segment
Entity information about the source.

dwSourceInfoSize Size of ns_SOURCEINFO structure in bytes.

Return Values

This function returns ns_OK if the information is successfully retrieved. Otherwise one of
the following error codes is generated:

ns_BADFILE Invalid file handle passed to function
ns_BADENTITY Invalid or inappropriate entity identifier specified
ns_BADSOURCE Invalid source identifier specified
ns_FILEERROR File access or read error

Remarks

The value of dwSourceID is an integer index value ranging from 0 to dwSourceCount -1
(which is returned by the function ns_GetSegmentInfo).

25

ns_SOURCEINFO

typedef struct {

double dMinVal; // Minimum possible value of the input signal.

double dMaxVal; // Maximum possible value of the input signal.

double dResolution; // Minimum input step size that can be resolved.
// (E.g. for a +/- 1 Volt 16-bit ADC this value is .0000305).

double dSubSampleShift; // Time difference (in sec) between the nominal timestamp
// and the actual sampling time of the source probe. This
// value will be zero when all source probes are sampled
// simultaneously.

double dLocationX; // X coordinate of source in meters.

double dLocationY; // Y coordinate of source in meters.

double dLocationZ; // Z coordinate of source in meters.

double dLocationUser; // Additional manufacturer-specific position information
// (e.g. electrode number in a tetrode).

double dHighFreqCorner; // High frequency cutoff in Hz of the source signal filtering.

uint32 dwHighFreqOrder; // Order of the filter used for high frequency cutoff.

char szHighFilterType[16]; // Type of filter used for high frequency cutoff (text format).

double dLowFreqCorner; // Low frequency cutoff in Hz of the source signal filtering.

uint32 dwLowFreqOrder; // Order of the filter used for low frequency cutoff.

char szLowFilterType[16]; // Type of filter used for low frequency cutoff (text format)..

char szProbeInfo[128]; // Additional text information about the signal source.

} ns_SOURCEINFO;

26

ns_GetSegmentData

Usage

ns_RESULT ns_GetSegmentData (uint32 hFile, uint32 dwEntityID, int32 nIndex,
double *pdTimeStamp, double *pData,
uint32 *pdwSampleCount);

Description

Returns the Segment data values in entry nIndex of the entity dwEntityID from the file
referenced by hFile. The data values are returned in the buffer pointed to by pData. The
timestamp of the entry is returned at the address pointed to by pdTimeStamp. The number of
samples written to the buffer is returned at pdwSampleCount.
The data buffer should be accessed as a 2-dimensional array for samples and sources.

In C, the array would be declared as double data[maxsamplecount][sourcecount];
and the values would be referenced by data[sample][source]

With pointers, the reference would be *(pData+(sample*sourcecount)+source)

Parameters

hFile Handle to an open file.

dwEntityID Identification number of the entity in the data file.
nIndex The index number of the requested Segment data item.

pdTimeStamp Pointer to the time stamp of the requested Segment data item.

pData Pointer to the buffer that is to receive the requested data.

pdwSampleCount Pointer to the number of samples returned in the data buffer.

Return Values

This function returns ns_OK if the information is successfully retrieved. Otherwise one of
the following error codes is generated:

ns_BADFILE Invalid file handle passed to function
ns_BADENTITY Invalid or inappropriate entity identifier specified
ns_BADINDEX Invalid entity index specified
ns_FILEERROR File access or read error

27

Accessing Neural Event Entities
The following functions retrieve information and data for Neural Entities.

ns_GetNeuralEventInfo

Usage

ns_RESULT ns_GetNeuralInfo (uint32 hFile, uint32 dwEntityID,
ns_NEURALINFO *pNeuralInfo,
uint32 dwNeuralInfoSize);

Description

Retrieves information on Neural Event entity dwEntityID from the file referenced by hFile.
The information is returned in the structure ns_NEURALINFO at the address pnNeuralInfo
The size of the structure ns_NEURALINFO is given by dwNeuralInfoSize in bytes.

Parameters

hFile Handle to an open file.

dwEntityID Identification number of the entity in the data file.
pNeuralInfo Pointer to the ns_NEURALINFO structure to receive the Neural

Event information.

dwNeuralInfoSize Size of the structure ns_NEURALINFO in bytes.

Return Values

This function returns ns_OK if the information is successfully retrieved. Otherwise one of
the following error codes is generated:

ns_BADFILE Invalid file handle passed to function
ns_BADENTITY Invalid or inappropriate entity identifier specified
ns_FILEERROR File access or read error

28

ns_NEURALINFO

typedef struct {

uint32 dwSourceEntityID; // Optional ID number of a source entity. If the Neural Event is
// derived from other entity sources, such as Segment Entities,
// this value links the Neural Event back to the source.

uint32 dwSourceUnitID; // Optional sorted unit ID number used in the source Entity.

char szProbeInfo[128]; // Text information about the source probe or the label of a
// source Segment Entity.

} ns_NEURALINFO;

29

ns_GetNeuralData

Usage

ns_RESULT ns_GetNeuralData(uint32 hFile, uint32 dwEntityID, uint32 dwStartIndex,
uint32 dwIndexCount, double *pData)

Description

Returns an array of timestamps for the neural events of the entity specified by dwEntityID
and referenced by the file handle hFile. The index of the first timestamp is nStartIndex and
the requested number of timestamps is given by dwIndexCount. The timestamps are returned
in the buffer pointed to by pData.

Parameters

hFile Handle to an open file.

dwEntityID Identification number of the entity in the data file.
dwStartIndex First index number of the requested Neural Events timestamp.

dwIndexCount Number of timestamps to retrieve.
pData Pointer to an array of double precision timestamps. The user application

must allocate sufficient space (dwIndexCount*sizeof(double) bytes) to
hold the requested data.

Return Values

This function returns ns_OK if the information is successfully retrieved. Otherwise one of
the following error codes is generated:

ns_BADFILE Invalid file handle passed to function
ns_BADENTITY Invalid or inappropriate entity identifier specified
ns_BADINDEX Invalid entity index specified
ns_FILEERROR File access or read error

30

Searching Entity Indexes
All of the data access functions defined in this API enumerate their data entries by index. The
functions described in this section can be used to link these indexes with time.

ns_GetIndexByTime

Usage

ns_RESULT ns_GetIndexByTime(uint32 hFile, uint32 dwEntityID, double dTime,
int32 nFlag, uint32 *pdwIndex)

Description

Searches in the file referenced by hFile for the data item identified by the index dwEntityID.
The flag specifies whether to locate the data item that starts before the time dTime or after the
time dTime. The index of the requested data item is returned at pdwIndex.

Parameters

hFile Handle to an open file

dwEntityID Identification number of the entity in the data file.
dTime Time of the data to search for

nFlag Flag specifying whether the index to be retrieved belongs to the data item
occurring before or after the specified time dTime. The flags are defined:

#define ns_BEFORE -1 // return the data entry occuring before
// (but not coincident with) the time dTime.

#define ns_CLOSEST 0 // return the data entry occuring at or closest
// to the time dTime

#define ns_AFTER +1 // return the data entry occuring after
// (but not coincident with) the time dTime.

pdwIndex Pointer to variable to receive the entry index.

Return Values

This function returns ns_OK if the information is successfully retrieved. Otherwise one of
the following error codes is generated:

ns_BADFILE Invalid file handle passed to function
ns_BADENTITY Invalid or inappropriate entity identifier specified
ns_FILEERROR File access or read error
ns_BADINDEX Unable to find an valid index given the search parameters

31

ns_GetTimeByIndex

Usage

ns_RESULT ns_GetTimeByIndex(uint32 hFile, uint32 dwEntityID, uint32 dwIndex,
double *pdTime)

Description

Retrieves the timestamp for the entity identified by dwEntityID and numbered dwIndex, from
the data file referenced by hFile. The timestamp is returned at pdTime.

Parameters

hFile Handle to an open file

dwEntityID Identification number of the entity in the data file.
dwIndex Index of the requested data.

pdTime Pointer to the variable to receive the timestamp.

Return Values

This function returns ns_OK if the information is successfully retrieved. Otherwise one of
the following error codes is generated:

ns_BADFILE Invalid file handle passed to function
ns_BADENTITY Invalid or inappropriate entity identifier specified
ns_BADINDEX Invalid entity index specified
ns_FILEERROR File access or read error

32

Win32 DLL Structure
On windows architectures neuroshare library DLLs should be kept in a “neuroshare” folder in
the windows directory (e.g. C:\WinNT\neuroshare) for easy location and management.
Applications may query the pathname of the Windows OS directory by using the Win32
GetWindowsDirectory() function or checking the “windir” environmental variable.

All Win32 DLLs contain a Version resource with multiple fields for defining titles, versions,
languages, architecture information, copyrights, and comments. These fields can be viewed by
looking at the “Version” panel under the files properties within Windows, or accessed by
applications through the Win32 GetFileVersionInfo() function. The Version resource for
Neuroshare-compliant DLL Libraries must contain a “Language Neutral, Unicode
(0x000004b0)” block descriptor and there are special requirements for the FileDescription and
Comments fields of this block descriptor:

The FileDescription text field must begin with “Neuroshare API Library” and may
include additional text such as “for .MNO and .XYZ files” .

The Comments text field must be composed of comma-delimited text fields that describe
the API specification version and the types of files that the library can open. The
specification revision is provided in the format “Major.minor” so that libraries written
according to revision 1.0 would have “1.0,” at the beginning of their comment fields.
The next pair of fields should be a plain text descriptor of the types of files that the
library can interpret and the file extension. For example, “NeuroCompany NEU file,
*.neu” would be used for a company with a *.neu file type. If a library can recognize
additional types, additional description/extension pairs can be added.

The Version resource of the DLL may contain additional block descriptors for other languages.
However, the “Language Neutral” block should be the first in the series. Unicode is used here
for portability among different language versions of Windows.

These requirements for the Version resource make it possible to query the specification version
and capabilities of a neuroshare-compliant DLL library without actually loading the DLL into
memory. Sophisticated applications should use this information for properly formatted File-
Open dialog windows. Simple applications can ignore this information and present the user with
a list of available DLLs so that the user can directly select the intended library.

33

The following Windows application code provides an example of how to read the
FileDescription and Comments fields from the Version resource of a DLL. In this code, the
version information buffer is statically allocated to 2048 bytes (enough for the FileDesc and
Comments fields) to simplify the programming.

#include <winver.h> // NOTE: must also link with version.lib

char *filedesc_str;
char *comments_str;
UINT filedesc_len;
UINT comments_len;
DWORD dummyhandle;
BYTE version_info_buf[2048];

GetFileVersionInfo("C:\\WinNT\\Neuroshare\\neuroinc.dll",
dummyhandle, 2048, &version_info_buf);

if (!VerQueryValue(&version_info_buf,
TEXT("\\StringFileInfo\\000004b0\\FileDescription"),
(void**)&filedesc_str, &filedesc_len)) return ERROR;

if (!VerQueryValue(&version_info_buf,
TEXT("\\StringFileInfo\\000004b0\\Comments"),
(void**)&comments_str, &comments_len)) return ERROR;

The Version resource should also include the VOS_WINDOWS32 and VFT_DLL flags in the
FILEOS and FILETYPE descriptor fields.

The functions in Neuroshare Win32 DLLs must be declared compiled for Run-Time Dynamic
Linking so that they can be loaded through the Win32 LoadLibrary() and GetProcAddress()
functions. The preferred convention is to include a DllMain() function to internally manage the
loading and attachment of the library to running threads.

34

The mechanics of writing Win32 DLLs are described in the “Platform SDK / Windows Base
Functions / Executables / Dynamic Link Libraries” section of the Microsoft Developers Network
(MSDN) help system that is included with Visual C++. This topic can also be reached through
Microsoft’s developer website (http://msdn.microsoft.com/). Example source code will also be
made available through the neuroshare.org web site.

The following Win32 code section demonstrates how to load a 32-bit Windows DLL and execute
the DLL function named “Function1.”

//Define the function prototype
int Function1(double dOneParam, int nTwoParam);

//Define the type for the function to use for type-casting
typedef int (*fnType1)(double dOneParam, int nTwoParam);

//Load library and get a handle to it
fnType1 function1; //Function pointer
HINSTANCE hInstDLL; //Handle to library DLL
hInstDLL = LoadLibrary("C:\\WinNT\Neuroshare\\neuroinc.dll ");

if (hInstDLL != NULL)
{

//Get pointer to the function with the name “Function1” in the library
function1= (fnType1) GetProcAddress(hInstDLL, "Function1");

if (!function1)
{

// handle the error
FreeLibrary(hDLL);
return ;

}
else
{

//Call the function. Parenthesis around the function tells the compiler
//the it is a pointer to a function and to call the function pointed at.
double dParam1 = 123.45;
int nParam2 = -10;
int nRetVal = (function1)(dParam1, nParam2);

}
}

//Clean up
FreeLibrary(hInstDLL);

35

Revision History

Revision 0.9a –Beta draft produced after the first working group meeting (Jan 16-18, 2002).
This meeting included Tim Bergel (Cambridge Electronic Design Ltd.), Charlotte Gruner
(Pronghorn Engineering), Shane Guillory (Bionic Technologies, LLC), Hans Löffler (Multi
Channel Systems MCS GmbH), Thane Plummer (Neuralynx Inc.), Tony Reina (The
Neurosciences Institute), Casey Stengel (Neuralynx Inc.), Angela Wang (Bionic Technologies,
LLC), Harvey Wiggins (Plexon Inc.), and Willard Wilson (Tucker-Davis Technologies). Draft
compiled by Shane Guillory and Angela Wang and published for public review and comment on
March 27, 2002.

